OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16561–16566

Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography

Wuzhou Song and Demetri Psaltis  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16561-16566 (2010)
http://dx.doi.org/10.1364/OE.18.016561


View Full Text Article

Enhanced HTML    Acrobat PDF (932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

© 2010 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.3950) Other areas of optics : Micro-optics
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 27, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 13, 2010
Published: July 22, 2010

Citation
Wuzhou Song and Demetri Psaltis, "Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography," Opt. Express 18, 16561-16566 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16561


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and D. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  3. X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009). [CrossRef]
  4. F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007). [CrossRef]
  5. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009). [CrossRef]
  6. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009). [CrossRef]
  7. C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009). [CrossRef]
  8. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008). [CrossRef] [PubMed]
  9. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007). [CrossRef] [PubMed]
  10. C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005). [CrossRef] [PubMed]
  11. D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7(12), 1791–1799 (2007). [CrossRef] [PubMed]
  12. S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007). [CrossRef]
  13. M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76(4), 895–899 (2004). [CrossRef] [PubMed]
  14. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000). [CrossRef]
  15. W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010). [CrossRef]
  16. Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005). [CrossRef]
  17. P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. Microelectromech. Syst. 6(2), 119–125 (1997). [CrossRef]
  18. R. W. Miller, Flow Measurement Engineering Handbook, 3rd ed. (McGraw-Hill, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited