OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16580–16586

Multi-objective genetic algorithm applied to spectroscopic ellipsometry of organic-inorganic hybrid planar waveguides

Vasco R. Fernandes, Carlos M. S. Vicente, Naoya Wada, Paulo S. André, and Rute A. S. Ferreira  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16580-16586 (2010)
http://dx.doi.org/10.1364/OE.18.016580


View Full Text Article

Enhanced HTML    Acrobat PDF (2547 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The applicably of multi-objective optimization to ellipsometric data analysis is presented and a method to handle complex ellipsometric problems such as multi sample or multi angle analysis using multi-objective optimization is described. The performance of a multi-objective genetic algorithm (MOGA) is tested against a single objective common genetic algorithm (CGA). The procedure is applied to the characterization (refractive index and thickness) of planar waveguides intended for the production of optical components prepared sol-gel derived organic-inorganic hybrids, so-called di-ureasils, modified with zirconium tetrapropoxide, Zr(OPrn)4 deposited on silica on silicon substrates. The results show that for the same initial conditions, MOGA performs better than the CGA, showing a higher success rate in the task of finding the best final solution.

© 2010 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 9, 2010
Revised Manuscript: July 3, 2010
Manuscript Accepted: July 5, 2010
Published: July 22, 2010

Citation
Vasco R. Fernandes, Carlos M. S. Vicente, Naoya Wada, Paulo S. André, and Rute A. S. Ferreira, "Multi-objective genetic algorithm applied to spectroscopic ellipsometry of organic-inorganic hybrid planar waveguides," Opt. Express 18, 16580-16586 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Drude, “Über die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbierender Kristalle,” Annalen der Physik 32, 584–625 (1887).
  2. A. Rothen, “The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films,” Rev. Sci. Instrum. 16(2), 26–30 (1945). [CrossRef]
  3. M. Land, J. J. Sidorowich, and R. K. Belew, “Using Genetic Algorithms with Local Search for Thin Film Metrology,” in Proceedings of the Seventh International Conference on Genetic Algorithms, T. Bäck, ed., (Morgan Kaufmann Publishers, Inc, 1997), pp. 537–544.
  4. O. Polgár, M. Fried, T. Lohner, and I. Bársony, “Comparison of algorithms used for evaluation of ellipsometric measurements - Random search, genetic algorithms, simulated annealing and hill climbing graph-searches,” Surf. Sci. 457(1-2), 157–177 (2000). [CrossRef]
  5. A. Kudla, “Application of the genetic algorithms in spectroscopic ellipsometry,” Thin Solid Films 455–456, 804–808 (2004). [CrossRef]
  6. O. Polgár, P. Petrik, T. Lohner, and M. Fried, “Evaluation strategies for multi-layer, multi-material ellipsometric measurements,” Appl. Surf. Sci. 253(1), 57–64 (2006). [CrossRef]
  7. B. Neto, A. L. J. Teixeira, N. Wada, and P. S. André, “Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers,” Opt. Express 15(26), 17520–17528 (2007). [CrossRef] [PubMed]
  8. R. A. S. Ferreira, C. M. S. Vicente, V. Fernandes, A. G. Macedo, E. Pecoraro, R. Nogueira, P. S. André, P. V. S. Marques, and L. D. Carlos, “Organic-inorganic hybrids for the new generation of optical networks,” in Proc. of International Conference on Transparent Optical Networks (ICTON 2009) (IEEE, S. Miguel (Portugal), July. 2009), pp. Tu.B4.2–1.
  9. C. Molina, R. A. Sá, L. D. Ferreira, R. R. Carlos, S. J. L. Gonçalves, Y. Ribeiro, P. J. Messaddeq, O. Moreira, A. P. Soppera, P. S. V. Leite, Marques, and V. de Zea Bermudez, “Planar and UV written channel optical waveguides prepared with siloxane-poly(oxyethylene)-zirconia organic-inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937–3945 (2005). [CrossRef]
  10. D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. Sá, . Ferreira, P. S. Andre, K. Dahmouche, V. de Zea Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil-zirconium oxocluster organic-inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008). [CrossRef]
  11. E. Pecoraro, S. García-Revilla, R. A. S. Ferreira, R. Balda, L. D. Carlos, and J. Fernández, “Real time random laser properties of Rhodamine-doped di-ureasil hybrids,” Opt. Express 18(7), 7470–7478 (2010). [CrossRef] [PubMed]
  12. O. Acher, E. Bigan, and B. Drévillon, “Improvements of phase-modulated ellipsometry,” Rev. Sci. Instrum. 60(1), 65–77 (1989). [CrossRef]
  13. A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial,” Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006). [CrossRef]
  14. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). [CrossRef]
  15. K. Deb and M. Goyal, “A Combined Genetic Adaptive Search (GeneAS) for Engineering Design,” Comput. Sci. Inform.. 26, 30–45 (1996).
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  17. C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. André, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48(1-2), 80–85 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited