OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16607–16617

High-resolution intracellular viscosity measurement using time-dependent fluorescence anisotropy

Wesley C. Parker, Nilay Chakraborty, Regina Vrikkis, Gloria Elliott, Stuart Smith, and Patrick J. Moyer  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16607-16617 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low-cost pulsed laser is used in conjunction with a homebuilt laser confocal-scanning epifluorescence microscope having submicron lateral and axial spatial resolution to determine cytoplasmic viscosity at specific intracytoplasmic locations in J774 mouse macrophage cells. Time-dependent fluorescence anisotropy measurements are made at each location and global deconvolution techniques are used to determine rotational correlation times. These rotational correlation times are related to the hydrated volume of 8-hydroxyperene-1,3,6-trisulfonic acid (HPTS) to calculate viscosity at specific points inside the cell. In the cytoplasmic areas measured, rotational correlation times of HPTS ranged from 0.186 ns to 0.411 ns, corresponding to viscosities ranging from 1.00 +/− 0.03 cP to 2.21+/− 0.05 cP.

© 2010 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.2520) Microscopy : Fluorescence microscopy
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 7, 2009
Revised Manuscript: June 17, 2010
Manuscript Accepted: June 17, 2010
Published: July 23, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Wesley C. Parker, Nilay Chakraborty, Regina Vrikkis, Gloria Elliott, Stuart Smith, and Patrick J. Moyer, "High-resolution intracellular viscosity measurement using time-dependent fluorescence anisotropy," Opt. Express 18, 16607-16617 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Chakraborty, W. Parker, K. Elliott, S. Smith, P. Moyer, and G. Elliott, “Molecular mobility in trehalose loaded mammalian cells: time-resolved fluorescence anisotropy measurements,” in Proceedings of the ASME 2008 Summer Bioengineering Conference 2008)
  2. N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008). [CrossRef] [PubMed]
  3. J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003). [CrossRef] [PubMed]
  4. G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006). [CrossRef]
  5. A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005). [CrossRef] [PubMed]
  6. D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006). [CrossRef] [PubMed]
  7. F. H. C. Crick and A. F. W. Hughes, “The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental,” Exp. Cell Res. 1(1), 37–80 (1950). [CrossRef]
  8. K. Yagi, “The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement,” Comp. Biochem. Physiol. 3(2), 73–91 (1961). [CrossRef] [PubMed]
  9. Y. Hiramoto, “Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg,” Exp. Cell Res. 56(2-3), 201–208 (1969). [CrossRef] [PubMed]
  10. M. Sato, T. Z. Wong, and R. D. Allen, “Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium,” J. Cell Biol. 97(4), 1089–1097 (1983). [CrossRef] [PubMed]
  11. M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984). [CrossRef]
  12. B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005). [CrossRef] [PubMed]
  13. B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003). [CrossRef] [PubMed]
  14. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974). [CrossRef]
  15. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). [CrossRef] [PubMed]
  16. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002). [CrossRef]
  17. D. Magde, W. W. Webb, and E. Elson, “Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705-& (1972).
  18. S. R. Aragon and R. Pecora, “Fluorescence Correlation Spectroscopy as a Probe of Molecular-Dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976). [CrossRef]
  19. D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978). [CrossRef]
  20. M. Gösch and R. Rigler, “Fluorescence correlation spectroscopy of molecular motions and kinetics,” Adv. Drug Deliv. Rev. 57(1), 169–190 (2005). [CrossRef]
  21. K. Fushimi and A. S. Verkman, “Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry,” J. Cell Biol. 112(4), 719–725 (1991). [CrossRef] [PubMed]
  22. J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity,” Biophys. J. 57(2), 231–240 (1990). [CrossRef] [PubMed]
  23. J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003). [CrossRef]
  24. K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004). [CrossRef] [PubMed]
  25. J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009). [CrossRef]
  26. J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed. (Springer, New York, 2006), pp. xxvi, 954 p.
  27. F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009). [CrossRef]
  28. M. Rampp, C. Buttersack, and H. D. Lüdemann, “c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions,” Carbohydr. Res. 328(4), 561–572 (2000). [CrossRef] [PubMed]
  29. D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000). [CrossRef]
  30. D. P. Miller, J. J. de Pablo, and H. R. Corti, “Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride,” J. Phys. Chem. B 103(46), 10243–10249 (1999). [CrossRef]
  31. D. P. Miller, J. J. de Pablo, and H. Corti, “Thermophysical properties of trehalose and its concentrated aqueous solutions,” Pharm. Res. 14(5), 578–590 (1997). [CrossRef] [PubMed]
  32. S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999). [CrossRef]
  33. J. Génotelle, “Expression de la viscosité des solutions sucrées,” Industries Alimentaires et Agricoles 95, 747–755 (1978).
  34. M. P. Longinotti and H. R. Corti, “Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime,” J. Phys. Chem. Ref. Data 37(3), 1503–1515 (2008). [CrossRef]
  35. A. J. Cross and G. R. Fleming, “Analysis of time-resolved fluorescence anisotropy decays,” Biophys. J. 46(1), 45–56 (1984). [CrossRef] [PubMed]
  36. M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993). [CrossRef]
  37. S. R. Flom and J. H. Fendler, “Global Analysis of Fluorescence Depolarization Experiments,” J. Phys. Chem. 92(21), 5908–5913 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited