OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16628–16639

Single-image separation measurements of two unresolved fluorophores

Shawn H. DeCenzo, Michael C. DeSantis, and Y. M. Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16628-16639 (2010)
http://dx.doi.org/10.1364/OE.18.016628


View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measuring subdiffraction separations between single fluorescent particles is important for biological, nano-, and medical-technology studies. Major challenges include (i) measuring changing molecular separations with high temporal resolution while (ii) using identical fluorescent labels. Here we report a method that measures subdiffraction separations between two identical fluorophores by using a single image of milliseconds exposure time and a standard single-molecule fluorescent imaging setup. The fluorophores do not need to be bleached and the separations can be measured down to 40 nm with nanometer precision. The method is called single-molecule image deconvolution — SMID, and in this article it measures the standard deviation (SD) of Gaussian-approximated combined fluorescent intensity profiles of the two subdiffraction-separated fluorophores. This study enables measurements of (i) subdiffraction dimolecular separations using a single image, lifting the temporal resolution of seconds to milliseconds, while (ii) using identical fluorophores. The single-image nature of this dimer separation study makes it a single-image molecular analysis (SIMA) study.

© 2010 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.2960) Imaging systems : Image analysis
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: March 17, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 15, 2010
Published: July 23, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Shawn H. DeCenzo, Michael C. DeSantis, and Y. M. Wang, "Single-image separation measurements of two unresolved fluorophores," Opt. Express 18, 16628-16639 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999).
  2. G. S. Gordon, D. Sitnikov, C. D. Webb, A. Teleman, A. Straight, R. Losick, A. W. Murray, and A. Wright, “Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms,” Cell 90, 1113–1121 (1997). [CrossRef] [PubMed]
  3. A. K. Salem, P. C. Searson, and K. W. Leong, “Multifunctional nanorods for gene delivery,” Nature 2, 668–671 (2003). [CrossRef]
  4. G. Han, P. Ghosh, M. De, and V. M. Rotello, “Drug and gene delivery using gold nanoparticles,” NanoBiotechnology 3, 40–45 (2007). [CrossRef]
  5. A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science 303, 676–678 (2004). [CrossRef]
  6. X. Qu, D. Wu, L. Mets, and N. F. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 101, 11298–11303 (2004). [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwatz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006). [CrossRef] [PubMed]
  8. A. Sharonov, and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A. 103, 18911–18916 (2006). [CrossRef] [PubMed]
  9. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. U.S.A. 97, 9461–9466 (2000). [CrossRef] [PubMed]
  10. L. S. Churchman, Z. Ökten, R. S. Rock, J. F. Dawson, and J. A. Spudich, “Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intermolecular distances through time,” Proc. Natl. Acad. Sci. U.S.A. 105, 1419–1423 (2005). [CrossRef]
  11. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007). [CrossRef] [PubMed]
  12. H. P. Kao, and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291–1300 (2007). [CrossRef]
  13. G. J. Schütz, V. Ph. Pastushenko, H. J. Gruber, H. Knaus, B. Pragl, and H. Schindler, “3D imaging of individual ion channels in live cells at 40 nm resolution,” Single Molecules 1, 25–31 (2000). [CrossRef]
  14. M. Speidel, A. Jonas, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett. 28, 69–71 (2003). [CrossRef] [PubMed]
  15. L. Holtzer, T. Meckel, and T. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007). [CrossRef]
  16. D. A. Agard, R. A. Steinberg, and R. M. Stroud, “Quantitative analysis of electrophoretograms: A mathematical approach to super-resolution,” Anal. Chem. 111, 257–268 (1981).
  17. J. M. Smith, and D. J. Thomas, “Quantitative analysis of one-dimensional gel electrophoresis profiles,” Comput. Appl. Biosci. 317, 1749–1753 (2007).
  18. J. Behboodian, “On the modes of a mixture of two normal distributions,” Technometrics 12, 131–139 (1970). [CrossRef]
  19. M. C. DeSantis, S. H. DeCenzo, J. L. Li, and Y. M. Wang, “Precision analysis for standard deviation measurements of single-fluorescent molecule images,” Opt. Express 18, 6563–6576 (2010). [CrossRef] [PubMed]
  20. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002). [CrossRef] [PubMed]
  21. S. Ram, E. S. Ward, and R. J. Ober, “Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103, 4457–4462 (2006). [CrossRef] [PubMed]
  22. Y. M. Wang, R. H. Austin, and E. C. Cox, “Single molecule measurements of repressor protein 1D diffusion on DNA,” Phys. Rev. Lett. 97, 048302 (2006). [CrossRef] [PubMed]
  23. Y. M. Wang, J. Tegenfeldt, W. Reisner, R. Riehn, X.-J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin, “Single-molecule studies of repressor-DNA interactions show long-range interactions,” Proc. Natl. Acad. Sci. U.S.A. 102, 9796–9801 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited