OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16702–16714

Dynamic ray tracing for modeling optical cell manipulation

Ihab Sraj, Alex C. Szatmary, David W. M. Marr, and Charles D. Eggleton  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16702-16714 (2010)
http://dx.doi.org/10.1364/OE.18.016702


View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current methods for predicting stress distribution on a cell surface due to optical trapping forces are based on a traditional ray optics scheme for fixed geometries. Cells are typically modeled as solid spheres as this facilitates optical force calculation. Under such applied forces however, real and non-rigid cells can deform, so assumptions inherent in traditional ray optics methods begin to break down. In this work, we implement a dynamic ray tracing technique to calculate the stress distribution on a deformable cell induced by optical trapping. Here, cells are modeled as three-dimensional elastic capsules with a discretized surface with associated hydrodynamic forces calculated using the Immersed Boundary Method. We use this approach to simulate the transient deformation of spherical, ellipsoidal and biconcave capsules due to external optical forces induced by a single diode bar optical trap for a range of optical powers.

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(020.7010) Atomic and molecular physics : Laser trapping
(140.2020) Lasers and laser optics : Diode lasers
(170.1530) Medical optics and biotechnology : Cell analysis

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: May 17, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: July 11, 2010
Published: July 23, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Ihab Sraj, Alex C. Szatmary, David W. M. Marr, and Charles D. Eggleton, "Dynamic ray tracing for modeling optical cell manipulation," Opt. Express 18, 16702-16714 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16702


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1(1), 15–30 (2005). [CrossRef]
  2. G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007). [CrossRef] [PubMed]
  3. J. P. Mills, M. Diez-Silva, D. J. Quinn, M. Dao, M. J. Lang, K. S. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh, “Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9213–9217 (2007). [CrossRef] [PubMed]
  4. R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000). [CrossRef]
  5. A. L. Weisenhorn, M. Khorsandi, S. Kasas, V. Gotzos, and H.-J. Butt, “Deformation and height anomaly of soft surfaces studied with an AFM,” Nanotechnology 4(2), 106–113 (1993). [CrossRef]
  6. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995). [CrossRef] [PubMed]
  7. R. R. Huruta, M. L. Barjas-Castro, S. T. O. Saad, F. F. Costa, A. Fontes, L. C. Barbosa, and C. L. Cesar, “Mechanical properties of stored red blood cells using optical tweezers,” Blood 92(8), 2975–2977 (1998). [PubMed]
  8. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999). [CrossRef] [PubMed]
  9. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  10. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001). [CrossRef] [PubMed]
  11. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005). [CrossRef] [PubMed]
  12. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008). [CrossRef]
  13. I. Sraj, J. Chichester, E. Hoover, R. Jimenez, J. Squier, C. D. Eggleton, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. in press. [PubMed]
  14. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  15. P. B Bareil, Y Sheng, and A Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006). [CrossRef]
  16. G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008). [CrossRef] [PubMed]
  17. C. Peskin and D. McQueen, “A three dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid,” J. Comput. Phys. 81(2), 372–405 (1989). [CrossRef]
  18. C. D. Eggleton and A. S. Popel, “Large deformation of red blood cell ghosts in a simple shear flow,” Phys. Fluids 10(8), 1834–1845 (1998). [CrossRef]
  19. P. Parag, S. Jadhav, C. D. Eggleton, and K. Konstantopoulos, “Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling,” Am. J. Physiol. Heart Circ. Physiol. 295(4), H1439–H1450 (2008). [CrossRef]
  20. E. Lac, D. Barthes-Biesel, N. A. Pelekasis, and J. Tsamopoulos, “Spherical capsules in three-dimensional unbounded Stokes flows: Effect of the membrane constitutive law and onset of buckling,” J. Fluid Mech. 516, 303–334 (1999). [CrossRef]
  21. P. Bagchi, P. C. Johnson, and A. S. Popel, “Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow,” J. Biomech. Eng. 127(7), 1070–1080 (2005). [CrossRef]
  22. H. C. Van de Hulst, “Light scattering by small particles,” John Wiley and Sons, New York. 172–176 (1957).
  23. J. Y. Walz and D. C. Prieve, “Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere,” Langmuir 8(12), 3073–3082 (1992). [CrossRef]
  24. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000). [CrossRef] [PubMed]
  25. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005). [CrossRef] [PubMed]
  26. M. Lofsted and T. Moller, “An evaluation framework for ray-triangle intersection algorithms,” J. Graphics, GPU, Games Tools 10(2) 13–26 (2005). [CrossRef]
  27. D. Badouel, “An efficient ray-polygon intersection,” in Graphics Gems, S. A. Glassner, Ed., (San Diego, CA, USA: Academic Press Professional Inc., (1998), 390–393.
  28. T. Moller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,” J. Graphics, GPU, Games Tools 2(1) 21–28 (1997).
  29. E. Reinhard, B. E. Smits, and C. Hansen, “Dynamic acceleration structures for interactive ray tracing,” Proceedings of the Eurographics workshop on rendering techniques, Brno, Czech Republic, 299–306 (2000).
  30. A. Diaz, N. Pelekasis, and D. Barthes-Biesel, “Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity,” Phys. Fluids 12(5), 948–957 (2000). [CrossRef]
  31. E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (4364 KB)      QuickTime
» Media 2: AVI (3442 KB)      QuickTime
» Media 3: AVI (4350 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited