OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16745–16750

Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection

Ki-Han Kim, Hye-Jung Jin, Kyoung-Ho Park, Joun-Ho Lee, Jae Chang Kim, and Tae-Hoon Yoon  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16745-16750 (2010)
http://dx.doi.org/10.1364/OE.18.016745


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a switchable achromatic reflector using a long-pitch cholesteric liquid crystal (CLC) whose Bragg reflection wavelength is chosen to be infrared by controlling the pitch of the CLC so that the planar texture is transparent over the entire visible wavelength. By using the light scattering of the focal conic texture, achromatic reflection can be achieved. Both textures are stable at zero electric field and the operating voltage of the proposed CLC device is much lower than that of conventional CLC devices. The proposed switchable reflector, which can be operated at a low voltage with low power, can be applied to reflective displays and to light shutters. By coupling with a reflective polarizer the efficiency of light scattering at the focal conic texture can be enhanced.

© 2010 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: June 1, 2010
Revised Manuscript: July 9, 2010
Manuscript Accepted: July 14, 2010
Published: July 23, 2010

Citation
Ki-Han Kim, Hye-Jung Jin, Kyoung-Ho Park, Joun-Ho Lee, Jae Chang Kim, and Tae-Hoon Yoon, "Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection," Opt. Express 18, 16745-16750 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16745


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994). [CrossRef]
  2. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994). [CrossRef]
  3. B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers 27, 39–42 (1996).
  4. M.-H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys. 81(3), 1063–1066 (1997). [CrossRef]
  5. M. Xu, F. Xu, and D.-K. Yang, “Effect of cell structure on the reflection of cholesteric liquid crystal displays,” J. Appl. Phys. 83(4), 1938–1944 (1998). [CrossRef]
  6. K. Hashimoto, M. Okada, K. Nishiguchi, N. Masazumi, E. Yamakawa, and T. Taniguchi, “Reflective color display using cholesteric liquid crystals,” SID Int. Symp. Digest Tech. Papers 29(1), 897–900 (1998). [CrossRef]
  7. A. Khan, X.-Y. Huang, R. Armbruster, F. Nicholson, N. Miller, B. Wall, and J. W. Doane, “Super high brightness reflective cholesteric display,” SID Int. Symp. Digest Tech. Papers 32(1), 460–463 (2001). [CrossRef]
  8. D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006). [CrossRef]
  9. Y. Koike, A. Mochizuki, and K. Yoshikawa, “Phase transition-type liquid-crystal projection display,” Displays 10, 93–99 (2003).
  10. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003). [CrossRef] [PubMed]
  11. A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Int. Symp. Digest Tech. Papers 30(1), 1063–1065 (1999). [CrossRef]
  12. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998). [CrossRef]
  13. W. Greubel, U. Wolff, and H. Kruger, “Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 24(1), 103–111 (1973). [CrossRef]
  14. A. Mochizuki and S. Kobayashi, “Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 225(1), 89–98 (1993). [CrossRef]
  15. W. J. Fritz, Z. J. Lu, D. Yang, D.-K. Yang, and St John WD, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995). [CrossRef] [PubMed]
  16. S. Shandrasekhar, Liquid Crystals. (Cambridge University Press, Cambridge, 1992).
  17. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals. (Oxford University Press, New York, 1993).
  18. L.-C. Chien, U. Muller, M.-F. Nabor, and J. W. Doane, “Multicolor reflective cholesteric displays,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 26, 169–171 (1995).
  19. F. Vicentini and L.-C. Chien, “Tunable chiral materials for multicolor reflective cholesteric display,” Liq. Cryst. 24(4), 483–488 (1998). [CrossRef]
  20. D. Davis, K. Kahn, X. Y. Huang, J. W. Doane, and C. Jones, “Eight-color high-resolution reflective cholesteric LCDs,” SID Int. Symp. Digest Tech. Papers 29(1), 901–904 (1998). [CrossRef]
  21. S. T. Wu, and D.-K. Yang, Reflective Liquid Crystal Displays. (Wiley, New York, 2001).
  22. K. Minoura, Y. Asaoka, E. Satoh, K. Deguchi, T. Satoh, I. Ihara, S. Fujiwara, A. Miyata, Y. Itoh, S. Gyoten, N. Matsuda, and Y. Kubota, “Making a mobile display using polarizer-free reflective LCDs and ultra-low-power driving technology,” Inf. Disp. 25, 12–16 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited