OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16765–16770

An intra-cavity Raman laser using synthetic single-crystal diamond

Walter Lubeigt, Gerald M. Bonner, Jennifer E. Hastie, Martin D. Dawson, David Burns, and Alan J. Kemp  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16765-16770 (2010)
http://dx.doi.org/10.1364/OE.18.016765


View Full Text Article

Enhanced HTML    Acrobat PDF (1374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low birefringence synthetic single-crystal diamond was used as a Raman laser medium inside a Q-switched Nd:YVO4 laser. A maximum average output power of 375mW was achieved at a wavelength of 1240nm and a repetition rate of 6.3kHz. This equates to a conversion efficiency of 4% from the diode laser to the first Stokes component at 1240nm. Optical losses within the diamond (~1% per single pass) limited the performance and are currently the main barrier to the demonstration of an efficient CW diamond Raman laser.

© 2010 OSA

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.4670) Materials : Optical materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 7, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: July 19, 2010
Published: July 23, 2010

Citation
Walter Lubeigt, Gerald M. Bonner, Jennifer E. Hastie, Martin D. Dawson, David Burns, and Alan J. Kemp, "An intra-cavity Raman laser using synthetic single-crystal diamond," Opt. Express 18, 16765-16770 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007). [CrossRef]
  2. P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004). [CrossRef]
  3. A. A. Demidovich, A. S. Grabtchikov, V. A. Orlovich, M. B. Danailov, and W. Kiefer, “Diode Pumped Diamond Raman Microchip Laser,” in 2005 Conference on Lasers and Electro-Optics Europe, (Munich, 2005), p. 251.
  4. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008). [CrossRef]
  5. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009). [CrossRef] [PubMed]
  6. A. J. Kemp, P. Millar, W. Lubeigt, J. E. Hastie, M. D. Dawson, and D. Burns, “Diamond in Solid-State Disk Lasers: Thermal Management and CW Raman Generation,” in Advanced Solid-State Photonics, (Optical Society of America, 2009).
  7. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010). [CrossRef] [PubMed]
  8. S. N. Karpukhin and A. I. Stepanov, “Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals,” Sov. J. Quantum Electron. 16(8), 1027–1031 (1986). [CrossRef]
  9. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999). [CrossRef]
  10. H. Herchen and M. A. Cappelli, “First-order Raman spectrum of diamond at high temperatures,” Phys. Rev. B Condens. Matter 43(14), 11740–11744 (1991). [CrossRef] [PubMed]
  11. D. Nikogosyan, Handbook of Properties of Optical Materials (John Wiley and Sons Ltd, London, 1997).
  12. A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond - a novel χ(3)-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3(4), 171–177 (2006). [CrossRef]
  13. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007). [CrossRef]
  14. F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, “Intracavity diamond heatspreaders in lasers: the effects of birefringence,” Opt. Express 14(20), 9250–9260 (2006). [CrossRef] [PubMed]
  15. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064um,” Opt. Eng. 46(6), 064002 (2007). [CrossRef]
  16. P. M. Martineau, M. P. Gaukroger, K. B. Guy, S. C. Lawson, D. J. Twitchen, I. Friel, J. O. Hansen, G. C. Summerton, T. P. G. Addison, and R. Burns, “High crystalline quality single crystal chemical vapour deposition diamond,” J. Phys. Condens. Matter 21(36), 364205 (2009). [CrossRef] [PubMed]
  17. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008). [CrossRef]
  18. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum Electronic-Properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988). [CrossRef]
  19. D. J. Gardiner, P. R. Graves, and H. J. Bowley, Practical Raman Spectroscopy (Berlin, 1989).
  20. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003). [CrossRef]
  21. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30(18), 2454–2456 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited