OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16777–16787

Long-distance entanglement-based quantum key distribution experiment using practical detectors

Hiroki Takesue, Ken-ichi Harada, Kiyoshi Tamaki, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, and Sei-ichi Itabashi  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16777-16787 (2010)
http://dx.doi.org/10.1364/OE.18.016777


View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an entanglement-based quantum key distribution experiment that we performed over 100 km of optical fiber using a practical source and detectors. We used a silicon-based photon-pair source that generated high-purity time-bin entangled photons, and high-speed single photon detectors based on InGaAs/InP avalanche photodiodes with the sinusoidal gating technique. To calculate the secure key rate, we employed a security proof that validated the use of practical detectors. As a result, we confirmed the successful generation of sifted keys over 100 km of optical fiber with a key rate of 4.8 bit/s and an error rate of 9.1%, with which we can distill secure keys with a key rate of 0.15 bit/s.

© 2010 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: June 7, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 18, 2010
Published: July 23, 2010

Citation
Hiroki Takesue, Ken-ichi Harada, Kiyoshi Tamaki, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, and Sei-ichi Itabashi, "Long-distance entanglement-based quantum key distribution experiment using practical detectors," Opt. Express 18, 16777-16787 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16777


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Ekert, “Quantum cryptography based on Bellf’s theorem,” Phys. Rev. Lett. 67, 661 (1991). [CrossRef] [PubMed]
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992). [CrossRef] [PubMed]
  3. E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002). [CrossRef]
  4. T. Tsurumaru, and K. Tamaki, “Security proof for quantum-key-distribution systems with threshold detectors,” Phys. Rev. A 78, 032302 (2008). [CrossRef]
  5. N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008). [CrossRef] [PubMed]
  6. M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).
  7. T. Tsurumaru, “Squash operator and symmetry,” Phys. Rev. A 81, 012328 (2010). [CrossRef]
  8. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005). [CrossRef]
  9. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006). [CrossRef]
  10. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343 (2007). [CrossRef]
  11. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008). [CrossRef]
  12. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2, 728 (2008). [CrossRef]
  13. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post processing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008). [CrossRef]
  14. B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35, 312–314 (2010). [CrossRef] [PubMed]
  15. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000). [CrossRef] [PubMed]
  16. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000). [CrossRef] [PubMed]
  17. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000). [CrossRef] [PubMed]
  18. G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001). [CrossRef]
  19. S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004). [CrossRef]
  20. A. Poppe, A. Fedrizzi, R. Ursin, H. Bohm, T. Lorunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004). [CrossRef] [PubMed]
  21. T. Honjo, H. Takesue, and K. Inoue, “Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs,” Opt. Lett. 32, 1165 (2007). [CrossRef] [PubMed]
  22. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008). [CrossRef]
  23. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007). [CrossRef]
  24. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008). [CrossRef] [PubMed]
  25. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14, 10043–10049 (2006). [CrossRef] [PubMed]
  26. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005). [CrossRef]
  27. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002). [CrossRef]
  28. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999). [CrossRef]
  29. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010). [CrossRef]
  30. H. Takesue, and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804 (2005). [CrossRef]
  31. B. Miquel, and H. Takesue, “Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” N. J. Phys. 11, 045006 (2009). [CrossRef]
  32. H. K. Lo, and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999). [CrossRef] [PubMed]
  33. P. W. Shor, and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000). [CrossRef] [PubMed]
  34. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004). [CrossRef]
  35. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).
  36. H. Takesue, and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited