OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16826–16831

Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16826-16831 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear properties of a low loss hydrogenated amorphous silicon core fiber have been characterized for transmission of high power pulses at 1540nm. Numerical modelling of the pulse propagation in the amorphous core material was used to establish the two-photon absorption, free-carrier absorption and the nonlinear refractive index, which were found to be larger than the values typical for crystalline silicon. Calculation of a nonlinear figure of merit demonstrates the potential for these hydrogenated amorphous silicon core fibers to be used in nonlinear silicon photonics applications.

© 2010 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.6000) Materials : Semiconductor materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 30, 2010
Revised Manuscript: July 15, 2010
Manuscript Accepted: July 17, 2010
Published: July 23, 2010

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers," Opt. Express 18, 16826-16831 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali, and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  2. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006). [CrossRef] [PubMed]
  3. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008). [CrossRef]
  4. B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009). [CrossRef]
  5. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010). [CrossRef]
  6. K. Narayanan, and S. F. Preble, “Optical nonlinearities in hydrogenated amorphous silicon waveguides,” Opt. Express 18, 8998–9005 (2010). [CrossRef] [PubMed]
  7. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010). [CrossRef] [PubMed]
  8. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009). [CrossRef]
  9. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998). [CrossRef]
  10. M. H. Brodsky, M. Cardon, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977). [CrossRef]
  11. L. Yin, and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007). [CrossRef] [PubMed]
  12. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007). [CrossRef]
  13. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010). [CrossRef] [PubMed]
  14. N. Minamikawa, and K. Tanaka, “Nonlinear optical properties of hydrogenated amorphous Si films probed by a novel z-scan technique,” Jpn. J. Appl. Phys. 45, L960–L962 (2006). [CrossRef]
  15. H. K. Tsang, C. S. Wong, and T. K. Liang, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  16. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004). [CrossRef]
  17. R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  18. P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992). [CrossRef]
  19. K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited