OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16858–16867

Ultra high bandwidth WDM using silicon microring modulators

Sasikanth Manipatruni, Long Chen, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16858-16867 (2010)
http://dx.doi.org/10.1364/OE.18.016858


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report 50 Gbit/s modulation capability using four silicon micro ring modulators within a footprint of 500 µm2. This is the highest total modulation capability shown in silicon using compact micro-ring modulators. Using the proposed techniques, silicon nanophotonic bandwidths can meet the requirements of future CMOS interconnects by using multiple wavelengths to extend beyond single device speeds.

© 2010 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(230.4555) Optical devices : Coupled resonators
(250.6715) Optoelectronics : Switching

ToC Category:
Integrated Optics

History
Original Manuscript: June 11, 2010
Revised Manuscript: July 13, 2010
Manuscript Accepted: July 13, 2010
Published: July 23, 2010

Citation
Sasikanth Manipatruni, Long Chen, and Michal Lipson, "Ultra high bandwidth WDM using silicon microring modulators," Opt. Express 18, 16858-16867 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010). [CrossRef]
  2. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  3. A. V. Krishnamoorthy and ., “The integration of silicon photonics and VLSI electronics for computing systems intra-connect,” Proc. SPIE 7220, 72200V (2009). [CrossRef]
  4. C. Batten, et al., “Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics,” High-Performance Interconnects, Symposium on, pp. 21–30, 16th IEEE Symposium on High Performance Interconnects, 2008.
  5. R. Beausoleil, et al, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper ITuD2.
  6. A. Shacham, K. Bergman, and L. P. Carloni, On the Design of a Photonic Network-on-Chip, Networks-on-Chip (2007), pp. 53–64.
  7. N. Kirman, et al., “Leveraging Optical Technology in Future Bus-based Chip Multiprocessors,” Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on, vol., no., pp.492–503, 9–13 Dec. 2006.
  8. International Technology Roadmap for Semiconductors, (ITRS 2007).
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  10. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator,” LEOS 2007, IEEE LEOS 2007 Annu. Meeting, Paper WO2, 537–538 (2007).
  11. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006). [CrossRef] [PubMed]
  12. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007). [CrossRef] [PubMed]
  13. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  14. G. Gunn, “CMOS photonicsTM - SOI learns a new trick,” in Proceedings of IEEE International SOI Conference Institute of Electrical and Electronics Engineers, New York, (2005), 7–13.
  15. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  16. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Group IV Photonics, 2008 5th IEEE International Conference on, vol., no., pp.4–6, 17–19 Sept. 2008.
  17. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010). [CrossRef] [PubMed]
  18. J. Zhang, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration,” Opt. Express 18(5), 5135–5141 (2010). [CrossRef] [PubMed]
  19. Silicon carrier dispersion modulators are ultimately limited by the carrier saturation velocity, due to free carrier–optical phonon interactions. In silicon, optical phonons limit the maximum speed of carriers to 10 ps per micron of transit length, which limits the maximum bandwidth to ~100 Gbit/s for a typical transverse carrier transit distance of 1 micron.
  20. S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator,” Opt. Express 15(20), 13035–13042 (2007). [CrossRef] [PubMed]
  21. F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity in deep-submicrometer CMOS technology,” Proc. IEEE 89(4), 556–573 (2001). [CrossRef]
  22. M. A. Popovic, E. P. Ippen, and F. X. Kartner, “Low-Loss Bloch Waves in Open Structures and Highly Compact, Efficient Si Waveguide-Crossing Arrays,” Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, vol., no., pp.56–57, 21–25 Oct. 2007.
  23. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998). [CrossRef]
  24. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006). [CrossRef] [PubMed]
  25. S. Manipaturni, K. Preston, L. Chen, and M. Lipson, “Ultra-Low Voltage, Ultra Small Mode Volume Silicon Nanophotonic Modulator. Submitted.
  26. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007). [CrossRef] [PubMed]
  27. F. Xia, L. Sekaric, and Yu. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  28. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, F. X. Kaertner, E. P. Ippen, and H. I. Smith, “Fabrication Control of the Resonance Frequencies of High-Index-Contrast Microphotonic Cavities,” in Integrated Photonics Research and Applications/Nanophotonics, (Optical Society of America, 2006), paper JWA3.
  29. SILVACO International, 4701 Patrick Henry Drive, Bldg. 1, Santa Clara, CA 94054.
  30. P. D. Hewitt and G. T. Reed, “Improved modulation performance of a silicon p-i-n device by trench isolation,” J. Lightwave Technol. 19(3), 387–390 (2001) (CrossRef). [CrossRef]
  31. B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005). [CrossRef]
  32. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  33. H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990). [CrossRef]
  34. S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York, NY: Wiley, 1981. ISBN: 047109837X.
  35. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006). [CrossRef]
  36. The chirp associated with this leading edge transient can play a critical role in determining the distance over which the interconnect can be deployed.
  37. I. Shake, H. Takara, and S. Kawanishi, “Simple Measurement of Eye Diagram and BER using High-Speed Asynchronous Sampling,” J. Lightwave Technol. 22(5), 1296–1302 (2004). [CrossRef]
  38. A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.
  39. http://www.picosecond.com/product/product.asp?prod_id=94
  40. http://www.shf.de/en/communication/products/rf_broadband_amplifier/40_gbps_rf_amplifier/
  41. J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006). [CrossRef] [PubMed]
  42. B. Kim, and V. Stojanovic, “Equalized interconnects for onchip networks: Modeling and optimization framework”. Int’l Conf. on Computer Aided Design, 2007.
  43. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010). [CrossRef]
  44. D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33(5), 530–532 (2008). [CrossRef] [PubMed]
  45. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006). [CrossRef] [PubMed]
  46. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008). [CrossRef] [PubMed]
  47. M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” In Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS’09), CPDB10, Baltimore, May 31-June 5 (2009).
  48. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited