OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16902–16928

Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links

Jeremy Witzens, Thomas Baehr-Jones, and Michael Hochberg  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16902-16928 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (5834 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Slot waveguides allow joint confinement of the driving electrical radio frequency field and of the optical waveguide mode in a narrow slot, allowing for highly efficient polymer based interferometers. We show that the optical confinement can be simply explained by a perturbation theoretical approach taking into account the continuity of the electric displacement field. We design phase matched transmission lines and show that their impedance and RF losses can be modeled by an equivalent circuit and linked to slot waveguide properties by a simple set of equations, thus allowing optimization of the device without iterative simulations. We optimize the interferometers for analog optical links and predict record performance metrics (Vπ = 200 mV @ 10 GHz in push-pull configuration) assuming a modest second order nonlinear coefficient (r33 = 50 pm/V) and slot width (100 nm). Using high performance optical polymers (r33 = 150 pm/V), noise figures of state of the art analog optical links can be matched while reducing optical power levels by approximately 30 times. With required optical laser power levels predicted at 50 mW, this could be a game changing improvement by bringing high performance optical analog link power requirements in the reach of laser diodes. A modified transmitter architecture allows shot noise limited performance, while reducing power levels in the slot waveguides and enhancing reliability.

© 2010 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

Original Manuscript: April 12, 2010
Revised Manuscript: June 20, 2010
Manuscript Accepted: June 22, 2010
Published: July 26, 2010

Jeremy Witzens, Thomas Baehr-Jones, and Michael Hochberg, "Design of transmission line driven slot waveguide
Mach-Zehnder interferometers 
and application to analog optical links," Opt. Express 18, 16902-16928 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Luo, S. Huang, Y. J. Cheng, T. D. Kim, Z. W. Shi, X. H. Zhou, and A. K.-Y. Jen, “Phenyltetraene-based nonlinear optical chromophores with enhanced chemical stability and electrooptic activity,” Org. Lett. 9(22), 4471–4474 (2007). [CrossRef] [PubMed]
  2. D. Jin, H. Chen, A. Barklund, J. Mallari, G. Yu, E. Miller, and R. Dinu, “EO polymer modulators reliability study,” Proc. SPIE 7599, 75990H (2010). [CrossRef]
  3. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  4. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008). [CrossRef]
  5. L. T. Nichols, K. J. Williams, and R. D. Esman, “Optimizing the Ultrawide-Band Photonic Link,” IEEE Trans. Microw. Theory Tech. 45(8), 1384–1389 (1997). [CrossRef]
  6. R. Taylor and S. R. Forrest, “Steering of an optically driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10(1), 144–146 (1998). [CrossRef]
  7. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288(5463), 119–122 (2000). [CrossRef] [PubMed]
  8. W. K. Burns, M. M. Howerton, R. P. Moeller, R. W. McElhanon, and A. S. Greenblatt, “Low Drive Voltage, Broad-Band LiNbO3 Modulators With and Without Etched Ridges,” J. Lightwave Technol. 17(12), 2551–2555 (1999). [CrossRef]
  9. F. Lucchi, D. Janner, M. Belmonte, S. Balsamo, M. Villa, S. Giurgiola, P. Vergani, and V. Pruneri, “Very low voltage single drive domain inverted LiNbO(3) integrated electro-optic modulator,” Opt. Express 15(17), 10739–10743 (2007). [CrossRef] [PubMed]
  10. PhotonicSystems, part number PSI-3600-MOD-D1.
  11. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  12. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  13. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  14. T. Pinguet, V. Sadagopan, A. Mekis, B. Analui, D. Kucharski, and S. Gloeckner, “A 1550 nm, 10 Gbps optical modulator with integrated driver in 130 nm CMOS”, Proc. IEEE conf. on Group IV Photonics, 1–3 (2007).
  15. R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  16. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” submitted for publication.
  17. Z. Shi, J. Luo, S. Huang, X.-H. Zhou, T.-D. Kim, Y.-J. Cheng, B. M. Polishak, T. R. Younkin, B. A. Block, and A. K.-Y. Jen, “Reinforced Site Isolation Leading to Remarkable Thermal Stability and High Electrooptic Activities in Cross-Linked Nonlinear Optical Dendrimers,” Chem. Mater. 20(20), 6372–6377 (2008). [CrossRef]
  18. C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997). [CrossRef]
  19. T. E. Darcie and P. F. Driessen, “Class-AB Techniques for High-Dynamic-Range Microwave-Photonic Links,” IEEE Photon. Technol. Lett. 18(8), 929–931 (2006). [CrossRef]
  20. E. I. Ackerman, W. K. Burns, G. E. Betts, J. X. Chen, J. L. Prince, M. D. Regan, H. V. Roussell, and C. H. Cox, “RF-Over-Fiber Links With Very Low Noise Figure,” J. Light. Tech. 26(15), 2441–2448 (2008). [CrossRef]
  21. J. Witzens, G. Masini, S. Sahni, B. Analui, and C. Gunn, “10 Gbits/s transceiver on silicon”, Proc. SPIE 6996, 699610 1–10 (2008).
  22. J. H. Sinsky, A. Adamiecki, C. A. Burrus, S. Chandrasekhar, J. Leuthold, and O. Wohlgemuth, “A 40-Gb/s Integrated Balanced Optical Front End and RZ-DPSK Performance,” IEEE Photon. Technol. Lett. 15(8), 1135–1137 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited