OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16995–17008

Orthogonal tributary channel exchange of 160-Gbit/s pol-muxed DPSK signal

Jian Wang, Omer F. Yilmaz, Scott R. Nuccio, Xiaoxia Wu, and Alan E. Willner  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16995-17008 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the orthogonal tributary channel exchange of a polarization-multiplexed (pol-muxed) differential phase-shift keying (DPSK) optical time-division multiplexed (OTDM) signal by exploiting the Kerr effect-induced nonlinear birefringence in a highly nonlinear fiber (HNLF). We first implement Kerr effect-based 40-to-10, 80-to-10, and 160-to-10 Gbit/s demultiplexing of DPSK OTDM signals with power penalties of less than 0.5, 1.5, and 2.6 dB, respectively, at a bit-error rate (BER) of 10−9. We further demonstrate 10-Gbit/s tributary channel exchange between two orthogonal polarizations of a 160-Gbit/s pol-muxed DPSK OTDM signal with a power penalty of less than 4 dB at a BER of 10−9. Moreover, Jones matrix analyses are applied to the orthogonal polarization exchange, indicating the exchange condition of orthogonal polarization exchange with the characteristic of transparency to the modulation format. The exchange performance is analyzed in terms of the extinction ratio (ER) of the newly converted signal to the original residual signal. The dynamic range of the product of nonlinear coefficient, pump power, and effective fiber length, the dynamic range of pump power, the impact and tolerance of pump polarization offset are discussed to characterize and optimize the performance of orthogonal polarization exchange.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.1150) Optical devices : All-optical devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 24, 2010
Revised Manuscript: July 11, 2010
Manuscript Accepted: July 15, 2010
Published: July 26, 2010

Jian Wang, Omer F. Yilmaz, Scott R. Nuccio, Xiaoxia Wu, and Alan E. Willner, "Orthogonal tributary channel exchange of 160-Gbit/s pol-muxed DPSK signal," Opt. Express 18, 16995-17008 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Technol. 24(12), 4616–4627 (2006). [CrossRef]
  2. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009). [CrossRef]
  3. A. H. Gnauck, G. Raybon, P. G. Bernasconi, J. Leuthold, C. R. Doerr, and L. W. Stulz, “1-Tb/s (6×170.6 Gb/s) transmission over 2000-km NZDF using OTDM and RZ-DPSK format,” IEEE Photon. Technol. Lett. 15(11), 1618–1620 (2003). [CrossRef]
  4. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006). [CrossRef]
  5. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-2-1438 . [CrossRef]
  6. K. Zhu and B. Mukherjee, “A review of traffic grooming in WDM optical networks: architectures and challenges,” Opt. Netw. Mag. 4, 55–64 (2002).
  7. G. Zarris, E. Hugues-Salas, N. A. Gonzalez, R. Weerasuriya, F. Parmigiani, D. Hillerkuss, P. Vorreau, M. Spyropoulou, S. K. Ibrahim, A. D. Ellis, R. Morais, P. Monteiro, P. Petropoulos, D. J. Richardson, I. Tomkos, J. Leuthold, and D. Simeonidou, “Field Experiments With a Grooming Switch for OTDM Meshed Networking,” J. Lightwave Technol. 28(4), 316–327 (2010). [CrossRef]
  8. J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004). [CrossRef]
  9. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006). [CrossRef]
  10. J. Wang, O. F. Yilmaz, S. R. Nuccio, X. X. Wu, Z. Bakhtiari, Y. Xiao-Li, J.-Y. Yang, H. Huang, Y. Yue, I. Fazal, R. Hellwarth, and A. E. Willner, “Data traffic grooming/exchange of a single 10-Gbit/s TDM tributary channel between two pol-muxed 80-Gbit/s DPSK channels,” Proc. CLEO’10, San Jose, California, USA, paper CFJ5, 2010.
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (San Diego, CA: Academic, 2002).
  12. V. Marembert, K. Schulze, C. Schubert, C. M. Weinert, H. G. Weber, S. Watanabe, and F. Futami, “Investigations of fiber Kerr switch: nonlinear phase shift measurements and optical time-division demultiplexing of 320 Gbit/s DPSK signals”, Proc. CLEO’05, paper CWK7, 2005.
  13. E. J. M. Verdurmen, A. M. J. Koonen, and H. de Waardt, “Time domain add-drop multiplexing for RZ-DPSK OTDM signals,” Opt. Express 14(12), 5114–5120 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5114 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited