OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17040–17052

Two-photon luminescence microscopy of large-area gold nanostructures on templates of anodized aluminum

Peter Nielsen, Jonas Beermann, Ole Albrektsen, Søren Hassing, Per Morgen, and Sergey I. Bozhevolnyi  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17040-17052 (2010)
http://dx.doi.org/10.1364/OE.18.017040


View Full Text Article

Enhanced HTML    Acrobat PDF (4663 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using linear reflection spectroscopy and far-field two-photon luminescence (TPL) scanning optical microscopy, we characterize highly enhancing, large-area gold nanostructures formed on porous templates made by anodization of aluminum with either oxalic acid or phosphoric acid. These templates are formed by a newly developed, stepwise technique making use of protective top oxide layers facilitating continuously tunable interpore distances. The upper, porous alumina layers are subsequently removed and the remaining embossed barrier layer is used as template for the sputtered gold, where the density of gold particles covering the sample is adjusted by regulating the sputtering conditions. We observe spatially averaged field intensity enhancement (FE) factors of up to ~ 5.2 10 2 and bright spots in the TPL-images exhibiting maximum FE factors of up to ~ 14 10 2 which is the largest estimated FE from any hitherto examined structures with our setup. We relate this large-area massive FE to constructive interference of surface plasmon (SP) polaritons scattered from the densely packed, randomly distributed gold particles and directly correlate this particle density with the strong and broad SP resonances as well as the magnitude of the FE factors. The average FE and the position of high enhancements in the TPL-images are dictated by the excitation wavelength, and the structures could evidently serve as versatile structures facilitating practical molecular sensing.

© 2010 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.4210) Scattering : Multiple scattering
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 2, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: July 21, 2010
Published: July 27, 2010

Citation
Peter Nielsen, Jonas Beermann, Ole Albrektsen, Søren Hassing, Per Morgen, and Sergey I. Bozhevolnyi, "Two-photon luminescence microscopy of
large-area gold nanostructures on templates of anodized aluminum," Opt. Express 18, 17040-17052 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977). [CrossRef]
  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974). [CrossRef]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977). [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  5. G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984). [CrossRef]
  6. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999). [CrossRef]
  7. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002). [CrossRef]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  9. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  10. A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007). [CrossRef]
  11. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335(6), 275–371 (2000). [CrossRef]
  12. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969). [CrossRef]
  13. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  14. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003). [CrossRef]
  15. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041 (2003). [CrossRef]
  16. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008). [CrossRef] [PubMed]
  17. A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007). [CrossRef]
  18. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007). [CrossRef] [PubMed]
  19. P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009). [CrossRef]
  20. P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010). [CrossRef]
  21. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007). [CrossRef] [PubMed]
  22. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  23. H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37(Part 2, No. 11A), L1340–L1342 (1998). [CrossRef]
  24. S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004). [CrossRef]
  25. W. Lee, K. Nielsch, and U. Gösele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18(47), 475713 (2007). [CrossRef]
  26. K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008). [CrossRef]
  27. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006). [CrossRef] [PubMed]
  28. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908). [CrossRef]
  29. C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002). [CrossRef]
  30. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  31. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009). [CrossRef] [PubMed]
  32. A. Pors, O. Albrektsen, S. I. Bozhevolnyi, and M. Willatzen, “The optical properties of a truncated spherical cavity embedded in gold,” Excerpt from the Proceedings of the COMSOL Conference, Milan (2009).
  33. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006). [CrossRef]
  34. J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69(15), 155429 (2004). [CrossRef]
  35. J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi 2(12), 3983–3987 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited