OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17053–17058

Stability conditions for moving dissipative solitons in one- and multidimensional systems with a linear potential

Wei- Ling Zhu and Ying-Ji He  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17053-17058 (2010)
http://dx.doi.org/10.1364/OE.18.017053


View Full Text Article

Enhanced HTML    Acrobat PDF (789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze stability of moving dissipative solitons in the one-, two, and three-dimensional cubic-quintic complex Ginzburg-Landau equations in the presence of a linear potential (linear refractive index modulation). The expressions of stability conditions and propagation trajectory of solitons are derived by means of a generalized variational approximation. Predictions of the variational analysis are fully confirmed by direct numerical simulations. The results have potential applications to using spatial dissipative solitons in optics as individually addressable and shift registers of the all-optical data processing systems.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 10, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 15, 2010
Published: July 27, 2010

Citation
Wei- Ling Zhu and Ying-Ji He, "Stability conditions for moving dissipative solitons in one- and multidimensional systems with a linear potential," Opt. Express 18, 17053-17058 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
  2. G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1419–1427 (2000). [CrossRef]
  3. N. N. Akhmediev, and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, London, 1997).
  4. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005). [CrossRef]
  5. W. J. Firth, in Self-Organization in Optical Systems and Applications in Information Technology, edited by M. A. Vorontsov and W. B. Miller (Springer-Verlag, Berlin, 1995), p. 69.
  6. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286(5444), 1518–1523 (1999). [CrossRef] [PubMed]
  7. W. J. Firth and A. J. Scroggie, “Optical bullet holes: Robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76(10), 1623–1626 (1996). [CrossRef] [PubMed]
  8. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58(3), 2542–2559 (1998). [CrossRef]
  9. F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92(1), 011101–011103 (2008). [CrossRef]
  10. C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100(23), 233902 (2008). [CrossRef] [PubMed]
  11. P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Bistable and addressable localized vortices in semiconductor lasers,” Phys. Rev. Lett. 104(22), 223902 (2010). [CrossRef] [PubMed]
  12. M. L. van Hecke, E. de Wit, and W. van Saarloos, “Coherent and incoherent drifting pulse dynamics in a complex Ginzburg-Landau equation,” Phys. Rev. Lett. 75(21), 3830–3833 (1995). [CrossRef] [PubMed]
  13. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(1), 1190–1201 (1996). [CrossRef] [PubMed]
  14. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997). [CrossRef]
  15. J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000). [CrossRef] [PubMed]
  16. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002). [CrossRef]
  17. B. A. Malomed, “Complex Ginzburg-Landau equation,” in: Encyclopedia of Nonlinear Science, A. Scott, ed., (Routledge, New York, 2005) pp. 157–160.
  18. B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg-Landau equations,” Chaos 17(3), 037117 (2007). [CrossRef] [PubMed]
  19. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: from stationary light bullets to pulsating complexes,” Chaos 17(3), 037112 (2007). [CrossRef] [PubMed]
  20. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97(7), 073904 (2006). [CrossRef] [PubMed]
  21. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75(3), 033811 (2007). [CrossRef]
  22. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. A 77(3), 033817 (2008). [CrossRef]
  23. D. Mihalache and D. Mazilu, “Ginzburg-Landau spatiotemporal dissipative optical solitons,” Rom. Rep. Phys. 60, 749–761 (2008).
  24. V. Skarka and N. B. Aleksić, “Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations,” Phys. Rev. Lett. 96(1), 013903 (2006). [CrossRef] [PubMed]
  25. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton percolation in random optical lattices,” Opt. Express 15(19), 12409–12417 (2007). [CrossRef] [PubMed]
  26. Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential,” Opt. Lett. 34(19), 2976–2978 (2009). [CrossRef] [PubMed]
  27. A. Kamagate, Ph. Grelu, P. Tchofo-Dinda, J. M. Soto-Crespo, and N. Akhmediev, “Stationary and pulsating dissipative light bullets from a collective variable approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 026609 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 2 Fig. 3 Fig. 4
 
Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited