OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17066–17074

Composite Yb:YAG/SiC-prism thin disk laser

G. A. Newburgh, A. Michael, and M. Dubinskii  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17066-17074 (2010)
http://dx.doi.org/10.1364/OE.18.017066


View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster’s angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster’s angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with ~38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M2 = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.

© 2010 OSA

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 29, 2010
Revised Manuscript: July 16, 2010
Manuscript Accepted: July 18, 2010
Published: July 27, 2010

Citation
G. A. Newburgh, A. Michael, and M. Dubinskii, "Composite Yb:YAG/SiC-prism thin disk laser," Opt. Express 18, 17066-17074 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. D. Sims, A. Stein, and C. Roth, “Rods pumped by flash lamps,” Appl. Opt. 6(3), 579–580 (1967). [CrossRef] [PubMed]
  2. J. Eichler, N. Hodgson, and H. Weber, “Output power and efficiencies of slab laser systems,” J. Appl. Phys. 66(10), 4608–4613 (1989). [CrossRef]
  3. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26(13), 986–988 (2001). [CrossRef]
  4. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
  5. A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]
  6. V. Hasson, and H.-P. Chou, “Cooling of High Power Laser Systems,” US Patent 6,667,999 (2003).
  7. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high power diode pumped solid state lasers,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE 4968, 106–114 (2003).
  8. C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006). [CrossRef]
  9. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004). [CrossRef]
  10. G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007). [CrossRef]
  11. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005). [CrossRef]
  12. http://www.cree.com/products/
  13. V. A. Dmitriev, and M. G. Spencer, “SiC fabrication technology: growth and doping,” in SiC Materials and Devices, Yoon-Soo Park, ed., (Academic Press, London, 1998), pp. 21–63.
  14. E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003). [CrossRef]
  15. J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003). [CrossRef]
  16. P. T. B. Shaffer, “Refractive index, dispersion, and birefringence of silicon carbide polytypes,” Appl. Opt. 10(5), 1034–1036 (1971). [CrossRef] [PubMed]
  17. A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 3–8 (1997). [CrossRef]
  18. A. Minassian and M. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230(1-3), 191–195 (2004). [CrossRef]
  19. M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009). [CrossRef]
  20. Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (4H) polytype of SiC,” J. Appl. Phys. 60(2), 612–614 (1986). [CrossRef]
  21. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005). [CrossRef]
  22. H. Lee, H. E. Meissner, and O. R. Meissner, “Stress Relief of Adhesive-Free-Bond (AFB®) Laser Crystal Composites at Elevated and Cryogenic Temperatures,” in 19th Solid State and Diode Laser Technology Review Technical Digest, 2006, Paper: Laser-5.
  23. A. E. Siegman, G. Nemes, and J. Serna, “How to (Maybe) Measure Laser Beam Quality,” in Diode Pumped Solid State Lasers:Applications and Issues, M. W. Dowley, ed., OSA TOPS Vol. 17 (Optical Society of America, Washington, D.C., 1998), pp. 184–199.
  24. A. Tunnermann, H. Zellmer, W. Schone, A. Giesen, and K. Contag, “New Concepts for Diode-Pumped Solid-State Lasers,” in High-Power Diode Lasers, Topics Appl. Phys.78, R. Diehl, ed., (Springer Verlag, Berlin-Heidelberg, 2000), pp. 369–408.
  25. T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993). [CrossRef]
  26. A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited