OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17089–17095

Determination of the rotational constant of the Cs2 0g - (6s + 6p3/2) state by trap loss spectroscopy

Jie Ma, Jizhou Wu, Yanting Zhao, Liantuan Xiao, and Suotang Jia  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17089-17095 (2010)
http://dx.doi.org/10.1364/OE.18.017089


View Full Text Article

Enhanced HTML    Acrobat PDF (956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

we demonstrated a high sensitive trap-loss spectroscopy technique by modulating fluorescence of cold atoms in magneto-optical trap, which allow a direct spectroscopy detection of the rovibrational levels with a very weak transition probability. The low-lying vibrational spectroscopy of υ = 3~17 of Cs2 0g- pure long-range state have been observed with rotational structures, which are well resolved up to J = 8. The rotational constants are obtained by fitting experimental data to a nonrigid rotation model.

© 2010 OSA

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Spectroscopy

History
Original Manuscript: April 7, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: July 1, 2010
Published: July 28, 2010

Citation
Jie Ma, Jizhou Wu, Yanting Zhao, Liantuan Xiao, and Suotang Jia, "Determination of the rotational constant of the Cs2 0g - (6s + 6p3/2) state by trap loss spectroscopy," Opt. Express 18, 17089-17095 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17089


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006). [CrossRef]
  2. W. C. Stwalley, Y. H. Uang, and G. Pichler, “Pure long-range molecules,” Phys. Rev. Lett. 41(17), 1164–1167 (1978). [CrossRef]
  3. A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999). [CrossRef]
  4. W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995). [CrossRef] [PubMed]
  5. L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994). [CrossRef]
  6. H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. 1. The 0g- pure long-range state and the long-range potential constants,” J. Chem. Phys. 106(19), 7899–7912 (1997). [CrossRef]
  7. R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of Rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994). [CrossRef] [PubMed]
  8. R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002). [CrossRef]
  9. H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, “Photoassociation spectroscopy of 87Rb2(5s1/2+5p1/2)0g- long-range molecular states: analysis by Lu-Fano graph and improved LeRoy-Bernstein formula,” Phys. Rev. A 73(3), 032501 (2006). [CrossRef]
  10. A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999). [CrossRef]
  11. M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit,” J. Chem. Phys. 121(14), 6779–6784 (2004). [CrossRef] [PubMed]
  12. M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004). [CrossRef] [PubMed]
  13. J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007). [CrossRef]
  14. D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008). [CrossRef] [PubMed]
  15. E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005). [CrossRef]
  16. D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999). [CrossRef] [PubMed]
  17. R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004). [CrossRef]
  18. J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009). [CrossRef]
  19. C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002). [CrossRef]
  20. T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006). [CrossRef]
  21. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965). [CrossRef]
  22. C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990). [CrossRef] [PubMed]
  23. C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000). [CrossRef]
  24. B. H. Bransden, and C. J. Joachain, Physics of Atoms and Molecules (Longman Group, 1983).
  25. J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14(5), 851–857 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited