OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17096–17105

Development of a highly sensitive compact sized optical fiber current sensor

Pramod R. Watekar, Seongmin Ju, Su-Ah Kim, Seongmook Jeong, Youngwoong Kim, and Won-Taek Han  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17096-17105 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have experimentally developed a highly sensitive and a compact size current sensor by using the CdSe quantum dots-doped bend insensitive optical fiber, operating in the visible band of wavelength. The modified sensitivity of this sensor was about 675 μrad/(Turn.A.m) for the loop radius of just 10 mm, which is more than 16 times larger than that of the single mode optical fiber current sensor.

© 2010 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.2240) Optical devices : Faraday effect

ToC Category:

Original Manuscript: April 26, 2010
Revised Manuscript: July 5, 2010
Manuscript Accepted: July 9, 2010
Published: July 28, 2010

Pramod R. Watekar, Seongmin Ju, Su-Ah Kim, Seongmook Jeong, Youngwoong Kim, and Won-Taek Han, "Development of a highly sensitive compact sized optical fiber current sensor," Opt. Express 18, 17096-17105 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998). [CrossRef]
  2. M. W. Shafer and J. C. Suits, “Preparation and Faraday rotation of divalent europium glasses,” J. Am. Ceram. Soc. 49(5), 261–264 (1966). [CrossRef]
  3. J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 109–114 (1991).
  4. J. F. Owen, P. B. Dorain, and T. Kobayasi, “Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K,” J. Appl. Phys. 52(3), 1216–1223 (1981). [CrossRef]
  5. T. Sato and I. Sone, “Development of bulk-optic current sensor using glass ring type Faraday cells,” Opt. Rev. 4(1), 35–37 (1997). [CrossRef]
  6. G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997). [CrossRef]
  7. T. D. Maffetone and T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Deliv. 6(4), 1430–1437 (1991). [CrossRef]
  8. C. D. Perciante and J. A. Ferrari, “Faraday current sensor with temperature monitoring,” Appl. Opt. 44(32), 6910–6912 (2005). [CrossRef] [PubMed]
  9. J. C. Yong, S. H. Yun, M. L. Lee, and B. Y. Kim, “Frequency-division-multiplexed polarimetric fiber laser current-sensor array,” Opt. Lett. 24(16), 1097–1099 (1999). [CrossRef]
  10. A. H. Rose, S. M. Etzel, and K. B. Rochford, “Optical fiber current sensors in high electric field environments,” IEEE J. Lightwave Technol. 17(6), 1042–1048 (1999). [CrossRef]
  11. M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984). [CrossRef]
  12. D. H. Kim, H. Y. Yang, B. H. Kim, U. C. Paek, and W.-T. Han, in Proceedings of Opto-Electronics and Communications Conference (OECC/COIN 2004), Yokohama Japan (2004), p.512.
  13. P. R. Watekar, H. Yang, S. Ju, and W.-T. Han, “Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots,” Opt. Express 17(5), 3157–3164 (2009). [CrossRef] [PubMed]
  14. K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” IEEE J. Lightwave Technol. 13(7), 1378–1384 (1995). [CrossRef]
  15. K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference, Florence, USA (1993), pp. 415–418.
  16. S. Matsuo, M. Ikeda, and K. Himeno, “Bend insensitive and low splice loss optical fiber for indoor wiring in FTTH,” in Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, Feb.23–27,2004 (Optical Society of America, Technical Digest, 2004), Paper number: ThI3.
  17. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” in Proceedings of OFC/NFOEC-2008, San Diego, USA, Feb.24–28,2008 (Optical Society of America, Technical Digest, 2008), Paper number: PDP10.
  18. I. Sakabe, H. Ishikawa, H. Tanji, Y. Terasawa, M. Ito, and T. Ueda, “Enhanced bending loss insensitive fiber and new cables for CWDM access networks,” in Proceeding of 53rd International Wire and Cable Symposium, Philadelphia, USA, November 14–17 (2004), pp. 112–118.
  19. K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005). [CrossRef]
  20. P. R. Watekar, S. Ju, and W.-T. Han, “Bend insensitive optical fiber with ultralow bending loss in the visible wavelength band,” Opt. Lett. 34(24), 3830–3832 (2009). [CrossRef] [PubMed]
  21. P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express 17(22), 20155–20166 (2009). [CrossRef] [PubMed]
  22. P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express 17(12), 10350–10363 (2009). [CrossRef] [PubMed]
  23. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002). [CrossRef]
  24. J. H. Kratzer and J. Schroeder, “Magnetooptic properties of semiconductor quantum dots in glass composition,” J. Non-Cryst. Solids 349, 299–308 (2004). [CrossRef]
  25. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981). [CrossRef] [PubMed]
  26. M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single mode fibers,” IEEE J. Lightwave Technol. 21(12), 3374–3378 (2003). [CrossRef]
  27. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurements of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25(6), 384–386 (2000). [CrossRef]
  28. Samsung bend insensitive optical fiber data-sheets (2010).
  29. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980). [CrossRef] [PubMed]
  30. P. R. Forman and F. C. Jahoda, “Linear birefringence effects on fiber-optic current sensors,” Appl. Opt. 27(15), 3088–3096 (1988). [CrossRef] [PubMed]
  31. A. Ghatak, and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, USA, 1998).
  32. D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991). [CrossRef]
  33. R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fiber,” IEEE J. Lightwave Technol. 7(12), 2084–2094 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited