OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17114–17123

Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers

Qiang Zhou, Wei Zhang, Jie-rong Cheng, Yi-dong Huang, and Jiang-de Peng  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17114-17123 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the noise performances of 1.5 μm correlated photon pair generation based on spontaneous four wave-mixing in three types of fibers, i.e., dispersion shifted fiber, traditional highly nonlinear fiber and highly nonlinear microstructure fiber are investigated experimentally. Result of the comparison shows that highly nonlinear microstructure fiber has the lowest Raman noise photon generation rate among the three types of fibers while correlated photon pair generation rate is the same. Theoretical analysis indicates that the noise performance is determined by the nonlinear index and Raman response of the material in fiber core. The Raman response rises with increasing doping level, while, for the nonlinear index, the impact of doping level is weak. As a result, highly nonlinear microstructure fiber with pure silica core has the best noise performance and great potential in practical sources of correlated photon pairs and heralded single photons.

© 2010 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: May 26, 2010
Revised Manuscript: July 16, 2010
Manuscript Accepted: July 18, 2010
Published: July 28, 2010

Qiang Zhou, Wei Zhang, Jie-rong Cheng, Yi-dong Huang, and Jiang-de Peng, "Noise performance comparison of 1.5 μm correlated photon pair generation in different fibers," Opt. Express 18, 17114-17123 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009). [CrossRef]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  3. S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).
  4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002). [CrossRef]
  5. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004). [CrossRef] [PubMed]
  6. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004). [CrossRef]
  7. H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005). [CrossRef] [PubMed]
  8. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005). [CrossRef] [PubMed]
  9. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006). [CrossRef] [PubMed]
  10. H. Takesue, “1.5 μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett. 90(20), 204101 (2007). [CrossRef]
  11. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008). [CrossRef] [PubMed]
  12. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33(6), 593–595 (2008). [CrossRef] [PubMed]
  13. S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17(12), 10290–10297 (2009). [CrossRef] [PubMed]
  14. L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B Quantum Semiclassical Opt. 3(5), 346–352 (2001). [CrossRef]
  15. J. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12(14), 3086–3094 (2004). [CrossRef] [PubMed]
  16. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005). [CrossRef] [PubMed]
  17. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005). [CrossRef] [PubMed]
  18. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30(12), 1530–1532 (2005). [CrossRef] [PubMed]
  19. J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30(24), 3368–3370 (2005). [CrossRef]
  20. J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007). [CrossRef] [PubMed]
  21. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007). [CrossRef] [PubMed]
  22. J. Fan, A. Migdall, J. Chen, and E. A. Goldschmidt, “Microstructure-fiber-based source of photonic Entanglement,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1724–1732 (2009). [CrossRef]
  23. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 microm,” Opt. Lett. 34(18), 2706–2708 (2009). [CrossRef] [PubMed]
  24. W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).
  25. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009). [CrossRef]
  26. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992). [CrossRef]
  27. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007). [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Chap. 11.
  29. K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2-andF-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002). [CrossRef]
  30. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989). [CrossRef]
  31. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited