OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17130–17140

Optical path clearing and enhanced transmission through colloidal suspensions

J. Baumgartl, T. Čižmár, M. Mazilu, V. C. Chan, A. E. Carruthers, B. A. Capron, W. McNeely, E. M. Wright, and K. Dholakia  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17130-17140 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We utilize advanced laser fields to clear a path through a dynamic turbid medium, a concept termed “Optical path clearing (OPC).” Particles are evacuated from a volume of the medium using the gradient and/or scattering forces due to an applied laser field with a suitably tailored spatial profile. Our studies encompass both an analytical model and proof-of-principle experiments where paths are cleared in dense bulk colloidal suspensions. Based on our results we suggest that high-performance and high efficiency OPC will be achieved by multiple-step clearing using dynamic laser fields based on Airy or inverted axicon beams.

© 2010 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: June 8, 2010
Revised Manuscript: July 21, 2010
Manuscript Accepted: July 21, 2010
Published: July 28, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

J. Baumgartl, T. Čižmár, M. Mazilu, V. C. Chan, A. E. Carruthers, B. A. Capron, W. McNeely, E. M. Wright, and K. Dholakia, "Optical path clearing and enhanced transmission through colloidal suspensions," Opt. Express 18, 17130-17140 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987). [CrossRef] [PubMed]
  4. A. Ashkin, and J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared-laser beams,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  5. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997). [CrossRef] [PubMed]
  6. K. Dholakia, P. J. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008). [CrossRef] [PubMed]
  7. J. R. Moffit, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008). [CrossRef]
  8. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003). [CrossRef] [PubMed]
  9. L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005). [CrossRef]
  10. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  11. L. Allen, M. J. Padgett, and M. Babiker, The orbital angular momentum of light, vol. 39 of Progress in optics (Elsevier, 1999).
  12. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008). [CrossRef]
  13. J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9, 1334–1336 (2009). [CrossRef] [PubMed]
  14. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007). [CrossRef]
  15. G. A. Siviloglou, and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef] [PubMed]
  16. M. V. Berry, and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979). [CrossRef]
  17. M. A. Bandres, and M. Guizar-Sicairos, “Paraxial group,” Opt. Lett. 34, 13–15 (2009). [CrossRef]
  18. J. E. Morris, M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength,” Opt. Express 17, 13236–13245 (2009). [CrossRef] [PubMed]
  19. S. Nemoto, “Transformation of waist parameters of a Gaussian beam by a thick lens,” Appl. Opt. 29, 809–816 (1990). [CrossRef] [PubMed]
  20. L. Allen, and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 84, 67–71 (2000). [CrossRef]
  21. J. Baumgartl, G. M. Hannappel, D. J. Stevenson, M. Mazilu, D. Day, M. Gu, and K. Dholakia, “Optical “snowblowing” of microparticles and cells in a microfluidic environment using Airy and parabolic wavepackets,” in “Optical Trapping and Optical Micromanipulation VI,”, vol. 7400 of Proc. SPIE, K. Dholakia and G. C. Spalding, eds. (2009), vol. 7400 of Proc. SPIE, p. 74001R.
  22. G. C. Spalding, J. Courtial, and R. D. Leonardo, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, 2008). [PubMed]
  23. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited