OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17141–17153

Stopping of Light by the Dynamic Tuning of Photonic Crystal Slow Light Device

Yuji Saito and Toshihiko Baba  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17141-17153 (2010)
http://dx.doi.org/10.1364/OE.18.017141


View Full Text Article

Enhanced HTML    Acrobat PDF (2334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple technique of stopping light pulses using a slow-light device based on photonic crystal coupled waveguide (PCCW). Dynamically tuning the material index chirp in the PCCW adiabatically transforms slow-light pulses into stopped ones. We demonstrate this in finite-difference time-domain simulation assuming ideal and actual tuning of the index chirp. In the ideal case, the group velocity of the almost stopped pulse is reduced to 190 times smaller than that of simple slow light pulse. The smallest limit is affected by the timing error of the tuning between wavelengths. Re-ordering and stopping of a pulse train are possible by optimizing the device length and timing. As a practical tuning method, we discuss carrier effects induced by photo-excitation. Taking into account carrier distribution and free carrier absorption, the actual behaviors of stopped light are estimated. We define and evaluate an effective delay-bandwidth product, which is affected by free carrier absorption.

© 2010 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Slow and Fast Light

History
Original Manuscript: June 9, 2010
Revised Manuscript: July 22, 2010
Manuscript Accepted: July 22, 2010
Published: July 28, 2010

Citation
Yuji Saito and Toshihiko Baba, "Stopping of light by the dynamic tuning of photonic crystal slow light device," Opt. Express 18, 17141-17153 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  3. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008). [CrossRef]
  4. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8395 . [CrossRef] [PubMed]
  5. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  6. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6227 . [CrossRef] [PubMed]
  7. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9245 . [CrossRef] [PubMed]
  8. T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009). [CrossRef]
  9. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010). [CrossRef]
  10. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  11. Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008). [CrossRef]
  12. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004). [CrossRef] [PubMed]
  13. J. Khurgin, “Adiabatically tunable optical delay lines and their performance limitations,” Opt. Lett. 30(20), 2778–2780 (2005). [CrossRef] [PubMed]
  14. R. S. Tucker, P.-C. Ku, and C. Chang-Hasnain, “Slow-light optical buffers – capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  15. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007). [CrossRef] [PubMed]
  16. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007). [CrossRef]
  17. L. Yosef Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-3-1796 . [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009). [CrossRef] [PubMed]
  19. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9398 . [CrossRef] [PubMed]
  20. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  21. S. Adachi, Physical properties of III–V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-VCH, 1992).
  22. B. R. Bennet, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990). [CrossRef]
  23. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7506 . [CrossRef] [PubMed]
  24. M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1441 KB)     
» Media 2: MOV (1637 KB)     
» Media 3: MOV (2325 KB)     
» Media 4: MOV (2291 KB)     
» Media 5: MOV (4241 KB)     
» Media 6: MOV (2151 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited