OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17165–17179

Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities

Claudiu G. Biris and Nicolae C. Panoiu  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17165-17179 (2010)
http://dx.doi.org/10.1364/OE.18.017165


View Full Text Article

Enhanced HTML    Acrobat PDF (1522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive theoretical and numerical analysis of the physical mechanisms pertaining to the nonlinear pulsed excitation of optical modes in plasmonic cavities made of metallic nanowires. Our analysis is based on extensive numerical simulations carried out both in the frequency and time domains. The numerical algorithm used in our study is based on the multiple scattering method and allows us to include in our analysis the effects of both the surface and bulk nonlinear polarizations generated at the second harmonic (SH). In particular, we investigate the physical roperties of plasmonic modes excited at the SH as the result of the interaction of femtosecond optical pulses with plasmonic nanocavities. We show that such cavities have two distinct types of modes, namely, plasmonic cavity modes and multipole plasmon modes generated via the hybridization of modes of single nanowires. Our analysis reveals that the properties of the latter modes depend only weakly on the cavity geometry, whereas the lifetime and quality factor of plasmonic cavity modes vary considerably with the system parameters.

© 2010 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 21, 2010
Revised Manuscript: July 16, 2010
Manuscript Accepted: July 21, 2010
Published: July 28, 2010

Citation
Claudiu G. Biris and Nicolae C. Panoiu, "Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities," Opt. Express 18, 17165-17179 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17165


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  3. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  5. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004). [CrossRef]
  6. N. C. Panoiu, R. M. Osgood, S. Zhang, and S. R. J. Brueck, “Zero-n bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23, 506–513 (2006). [CrossRef]
  7. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of Zeroth-Order Band Gaps in Negative-Refraction Photonic Crystal Superlattices at Near-Infrared Frequencies,” Phys. Rev. Lett. 102, 203905 (2009). [CrossRef] [PubMed]
  8. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  9. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  10. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second Harmonic Generation from a Nano-patterned Isotropic Nonlinear Material,” Nano Lett. 6, 1027–1030 (2006). [CrossRef]
  11. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays,” Phys. Rev. Lett. 97, 146102 (2006). [CrossRef] [PubMed]
  12. L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007). [CrossRef]
  13. Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009). [CrossRef]
  14. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-Photon Tunneling via Localized Surface Plasmons,” Phys. Rev. Lett. 88, 187402 (2002). [CrossRef] [PubMed]
  15. X. W. Wang, G. C. Schatz, and S. K. Gray, “Ultrafast pulse excitation of a metallic nanosystem containing a Kerr nonlinear material,” Phys. Rev. B 74, 195439 (2006). [CrossRef]
  16. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997). [CrossRef]
  17. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ /4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence,” Nano Lett. 7, 28 (2007). [CrossRef] [PubMed]
  18. B. Knoll, and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999). [CrossRef]
  19. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14, 2921–2913 (2006). [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct Observation of Localized Second-Harmonic Enhancement in Random Metal Nanostructures,” Phys. Rev. Lett. 90, 197403 (2003). [CrossRef] [PubMed]
  21. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005). [CrossRef]
  22. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006). [CrossRef]
  23. R. D. R. Bhat, N. C. Panoiu, S. R. J. Brueck, and R. M. Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express 16, 4588–4596 (2008). [CrossRef] [PubMed]
  24. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  25. N. C. Panoiu, and R. M. Osgood, “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32, 2825–2827 (2007). [CrossRef] [PubMed]
  26. N. C. Panoiu, and R. M. Osgood, “Subwavelength Nonlinear Plasmonic Nanowire,” Nano Lett. 4, 2427–2430 (2004). [CrossRef]
  27. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength Plasmonic Lattice Solitons in Arrays of Metallic Nanowires,” Phys. Rev. Lett. 104, 106802 (2010). [CrossRef] [PubMed]
  28. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–459 (2009). [CrossRef] [PubMed]
  29. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  30. M. P. Nezhand, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  31. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010). [CrossRef] [PubMed]
  32. V. Berger, “Second-harmonic generation in monolithic cavities,” J. Opt. Soc. Am. B 14, 1351–1360 (1997). [CrossRef]
  33. D. G. Gusev, I. V. Soboleva, M. G. Martemyanov, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68, 233303 (2003). [CrossRef]
  34. G. Kozyreff, J. L. D. Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77, 043817 (2008). [CrossRef]
  35. Y. Xu, M. Han, A. B. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett. 100, 163905 (2008). [CrossRef] [PubMed]
  36. C. G. Biris, and N. C. Panoiu, “Second harmonic generation in metamaterials based on homogenous centrosymmetric nanowires,” Phys. Rev. B 81, 195102 (2010). [CrossRef]
  37. J. A. Sanchez-Gil, and A. A. Maradudin, “Dynamic near-field calculations of surface-plasmon polariton pulses resonantly scattered at sub-micron metal defects,” Opt. Express 12, 883–894 (2004). [CrossRef] [PubMed]
  38. E. Centeno, and D. Felbacq, “Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals,” J. Opt. Soc. Am. A 17, 320–327 (2000). [CrossRef]
  39. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008). [CrossRef]
  40. C. I. Valencia, E. R. Mendez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21, 36–44 (2004). [CrossRef]
  41. C. I. Valencia, E. R. Mendez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by two-dimensional particles,” J. Opt. Soc. Am. B 20, 2150–2161 (2003). [CrossRef]
  42. E. Centeno, and D. Felbacq, “Second-harmonic emission in two-dimensional photonic crystals,” J. Opt. Soc. Am. B 23, 2257–2264 (2006). [CrossRef]
  43. J. Rudnick, and E. A. Stern, “Second-harmonic Radiation from Metal Surfaces,” Phys. Rev. B 4, 4274 (1971). [CrossRef]
  44. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83, 4045 (1999). [CrossRef]
  45. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef] [PubMed]
  46. T. F. Heinz, “Second-Order Nonlinear Optical Effects at Surfaces and Interfaces,” in Nonlinear Surface Electromagnetic Phenomena, edited by H. E. Ponath and G. I. Stegeman (Elsevier, Amsterdam, 1991); pp. 353–416.
  47. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3635 (2004). [CrossRef]
  48. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry,” Phys. Rev. 174, 813–822 (1968). [CrossRef]
  49. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102, 107401 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2045 KB)     
» Media 2: AVI (2009 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited