OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17252–17261

Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17252-17261 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate chip-based Tbaud optical signal processing for all-optical performance monitoring, switching and demultiplexing based on the instantaneous Kerr nonlinearity in a dispersion-engineered As2S3 planar waveguide. At the Tbaud transmitter, we use a THz bandwidth radio-frequency spectrum analyzer to perform all-optical performance monitoring and to optimize the optical time division multiplexing stages as well as mitigate impairments, for example, dispersion. At the Tbaud receiver, we demonstrate error-free demultiplexing of a 1.28 Tbit/s single wavelength, return-to-zero signal to 10 Gbit/s via four-wave mixing with negligible system penalty (< 0.5 dB). Excellent performance, including high four-wave mixing conversion efficiency and no indication of an error-floor, was achieved. Our results establish the feasibility of Tbaud signal processing using compact nonlinear planar waveguides for Tbit/s Ethernet applications.

© 2010 OSA

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: March 30, 2010
Revised Manuscript: July 11, 2010
Manuscript Accepted: July 16, 2010
Published: July 29, 2010

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, "Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal," Opt. Express 18, 17252-17261 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009). [CrossRef]
  2. H. Ji, H. Hu, M. Galili, L. K. Oxenløwe, M. Pu, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical Waveform Sampling and Error-free Demultiplexing of 1.28 Tbit/s Serial Data in a Silicon Nanowire,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2010 (Postdeadline Paper).
  3. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010). [CrossRef]
  4. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol. 28(4), 423–433 (2010). [CrossRef]
  5. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000). [CrossRef]
  6. M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998). [CrossRef]
  7. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006). [CrossRef]
  8. C. Schmidt-Langhorst, R. Ludwig, D.-D. Groß, L. Molle, M. Seimetz, R. Freund, and C. Schubert, “Generation and Coherent Time-Division Demultiplexing of up to 5.1 Tb/s Single-Channel 8-PSK and 16-QAM Signals,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2009 (Postdeadline Paper).
  9. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1–2), 83–99 (2008). [CrossRef]
  10. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002). [CrossRef]
  11. J. Li, A. Berntson, and G. Jacobsen, “Polarization-Independent Optical Demultiplexing Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber,” IEEE Photon. Technol. Lett. 20(9), 691–693 (2008). [CrossRef]
  12. M. Matsumoto, “A Fiber-Based All-Optical 3R Regenerator for DPSK Signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007). [CrossRef]
  13. G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006). [CrossRef]
  14. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008). [CrossRef] [PubMed]
  15. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005). [CrossRef] [PubMed]
  16. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14(11), 3204–3216 (1997). [CrossRef]
  17. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32(7), 835–837 (2007). [CrossRef] [PubMed]
  18. L. K. Oxenlwe, F. Gomez, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640-Gbit/s Data Transmission and Clock Recovery Using an Ultrafast Periodically Poled Lithium Niobate Device,” J. Lightwave Technol. 27(3), 205–213 (2009). [CrossRef]
  19. M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009). [CrossRef] [PubMed]
  20. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  21. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007). [CrossRef]
  22. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  23. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic Chip Based 1.28 Tbaud Transmitter Optimization and Receiver OTDM Demultiplexing,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2010 (Postdeadline Paper).
  24. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010). [CrossRef] [PubMed]
  25. T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-Impairment Monitoring at 320 Gb/s based on Cross Phase Modulation Radio-Frequency Spectrum Analyzer,” IEEE Photon. Technol. Lett., (2010). [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (California: Academic Press, 2001).
  27. C. Dorrer and D. N. Maywar, “RF Spectrum Analysis of Optical Signals Using Nonlinear Optics,” J. Lightwave Technol. 22(1), 266–274 (2004). [CrossRef]
  28. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  29. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]
  30. S. Song, C. T. Allen, K. R. Demarest, and R. Hui, “Intensity-Dependent Phase-Matching Effects on Four-Wave Mixing in Optical Fibers,” J. Lightwave Technol. 17(11), 2285–2290 (1999). [CrossRef]
  31. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  32. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989). [CrossRef]
  33. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  34. S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler,” Opt. Express 16(25), 20803–20808 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited