OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17262–17272

Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics

Angela Pirri, Guido Toci, Daniele Alderighi, and Matteo Vannini  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17262-17272 (2010)
http://dx.doi.org/10.1364/OE.18.017262


View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the behavior of two Yb3+ doped ceramics (i.e. 10% at. and 20% at.) under quasi-continuous wave laser pumping. Two different behaviors are found depending on the density of Yb3+ in the excited level. Experimental results show that at low population inversion density, the maximum output power and the efficiency are almost independent on the doping concentration. In particular, an output power as high as 8.9 W with a corresponding slope efficiency of 52% with respect to the injected pump power was reached with the 20% at. sample. Conversely, at high population inversion densities, the 20% doped sample shows a sudden decrease of the laser output for increasing pump power, due to the onset of a nonlinear loss mechanism. Finally, we report a comparison of the experimental results with numerical simulations for the evaluation of the inversion density and of the temperature distribution.

© 2010 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 24, 2010
Revised Manuscript: June 23, 2010
Manuscript Accepted: July 7, 2010
Published: July 29, 2010

Citation
Angela Pirri, Guido Toci, Daniele Alderighi, and Matteo Vannini, "Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics," Opt. Express 18, 17262-17272 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature,” Jpn. J. Appl. Phys. 47(4), 2149–2151 (2008). [CrossRef]
  2. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb:YLF,” Opt. Express 15(13), 7994–8002 (2007). [CrossRef] [PubMed]
  3. A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009). [CrossRef] [PubMed]
  4. D. Alderighi, A. Pirri, G. Toci, and M. Vannini, “Tunability enhancement of Yb:YLF based laser,” Opt. Express 18(3), 2236–2241 (2010). [CrossRef] [PubMed]
  5. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004). [CrossRef] [PubMed]
  6. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005). [CrossRef] [PubMed]
  7. V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006). [CrossRef]
  8. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008). [CrossRef] [PubMed]
  9. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001). [CrossRef]
  10. T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009). [CrossRef]
  11. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]
  12. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).
  13. J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007). [CrossRef] [PubMed]
  14. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef] [PubMed]
  15. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009). [CrossRef]
  16. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 1–3 (2007). [CrossRef]
  17. A. Lobad, T. Newell, and W. Latham, 6.5 kW, Yb:YAG ceramic thin disk laser”, presented at the Solid State Lasers XIX: Technology and Devices, San Francisco, CA, USA, 24 January 2010.
  18. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007). [CrossRef] [PubMed]
  19. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009). [CrossRef] [PubMed]
  20. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, ” Nonlinear Decay of the Excited State in Yb:YAG,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49 (2005).
  21. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003). [CrossRef]
  22. M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser” (Herbert Utz Verlag, 2009).
  23. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007). [CrossRef] [PubMed]
  24. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999). [CrossRef]
  25. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997). [CrossRef]
  26. E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, “183-W, M2 = 2.4 Yb:YAG Q-switched laser,” Opt. Lett. 24(3), 154–156 (1999). [CrossRef]
  27. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006). [CrossRef]
  28. A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992). [CrossRef]
  29. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004). [CrossRef]
  30. S. Yiou, F. Balembois, and P. George, “Numerical modelling of a continuous-wave Yb_doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22(3), 572–581 (2005). [CrossRef]
  31. S. Fredrich-Thornton, J. Bisson, D. Kouznetsov, K. Ueda, K. Petermann, and G. Huber, “Up-Conversion to the Conduction Band in Highly Doped Yb:YAG and Yb:Y2O3 and Its Effect on Thin-Disk Lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFJ6. (2007)
  32. U. Wolters, S. T. Fredrich-Thornton, F. Tellkamp, K. Petermann, and G. Huber, “Photoconductivity in Yb-Doped Materials at High Excitation Densities and its Effect on Highly Yb-Doped Thin-Disk Lasers,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CA9_2 (2009).
  33. S. T. Fredrich-Thornton, R. Peters, K. Petermann, and G. Huber, “Degradation of Laser Performance in Yb-Doped Oxide Thin Disk Lasers at High Inversion Densities” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB18 (2009)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited