OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17273–17279

Arbitrary waveguide connector based on embedded optical transformation

Kuang Zhang, Qun Wu, Fan-Yi Meng, and Le-Wei Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17273-17279 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Arbitrary connector for waveguides of different cross sections is proposed and designed theoretically based on the embedded optical transformation theory. First, the general expressions of constitutive tensors of the metamaterials filled in the connector are derived. Second, there are some full-wave simulations that validate the constitutive tensors derived. The results show that the connector with metamaterials inclusions with designed constitutive parameters can fulfill the reflectionless transmission of electromagnetic waves between waveguides of different cross sections. Finally, connectors of several forms are investigated parametrically, and two sets of constitutive tensors that can be physically achieved by existing metamaterials are gotten. It is believed that this study provides a feasible way to fulfill the efficient transmission of electromagnetic waves between waveguides of different cross sections.

© 2010 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: June 15, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: July 19, 2010
Published: July 29, 2010

Kuang Zhang, Qun Wu, Fan-Yi Meng, and Le-Wei Li, "Arbitrary waveguide connector based on embedded optical transformation," Opt. Express 18, 17273-17279 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  3. H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007). [CrossRef] [PubMed]
  4. B. L. Zhang, H. S. Chen, B. I. Wu, Y. Luo, L. X. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007). [CrossRef]
  5. W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93(2), 021909 (2008). [CrossRef]
  6. H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009). [CrossRef]
  7. C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16(23), 19366–19374 (2008). [CrossRef]
  8. C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009). [CrossRef] [PubMed]
  9. B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79(2), 023806 (2009). [CrossRef]
  10. B. Ivsic, Z. Sipus, and S. Hrabar, “Analysis of Uniaxial Multilayer Cylinders Used for Invisible Cloak Realization,” IEEE Trans. Antenn. Propag. 57(5), 1521–1527 (2009). [CrossRef]
  11. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103(7), 073901 (2009). [CrossRef] [PubMed]
  12. J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  13. X. F. Xu, Y. J. Feng, Y. Hao, J. M. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95(18), 184102 (2009). [CrossRef]
  14. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  15. Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D Appl. Phys. 42(3), 035408 (2009). [CrossRef]
  16. X. D. Luo, T. Yang, Y. W. Gu, H. Y. Chen, and H. R. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94(22), 223513 (2009). [CrossRef]
  17. T. R. Zhai, Y. Zhou, J. Zhou, and D. H. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17(20), 17206–17213 (2009). [CrossRef] [PubMed]
  18. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008). [CrossRef] [PubMed]
  19. D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009). [CrossRef] [PubMed]
  20. W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, “Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(6), 066607 (2008). [CrossRef]
  21. Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009). [CrossRef]
  22. W. Q. Ding, D. H. Tang, Y. Liu, L. X. Chen, and X. D. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010). [CrossRef]
  23. Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A 27(5), 968–972 (2010). [CrossRef]
  24. X. F. Zang and C. Jiang, “Manipulating the field distribution via optical transformation,” Opt. Express 18(10), 10168–10176 (2010). [CrossRef] [PubMed]
  25. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008). [CrossRef]
  26. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express 18(2), 767–772 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited