OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17313–17321

Critical conditions of control light for a silicon-based photonic crystal bistable switching

Chao Li, Hong Wang, Jun-Fang Wu, and Wen-Cheng Xu  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17313-17321 (2010)
http://dx.doi.org/10.1364/OE.18.017313


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we investigate the critical conditions of control light for a silicon-based photonic crystal bistable switching. By establishing a time-dependent evolution equation, the critical pump power and pump time of the control light are derived, respectively. It is found that with the increase of the frequency detuning of the incident light, the critical power of the control light will rise, while the corresponding critical time will be shortened. It is also revealed that under the same conditions, the critical total power of the multiple-beam control light is less than the one of the single-beam control light. The theoretical predictions show perfect agreement with the simulation results.

© 2010 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.1150) Optical devices : All-optical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 12, 2010
Manuscript Accepted: July 22, 2010
Published: July 29, 2010

Citation
Chao Li, Hong Wang, Jun-Fang Wu, and Wen-Cheng Xu, "Critical conditions of control light for a silicon-based photonic crystal bistable switching," Opt. Express 18, 17313-17321 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Ogusu and K. Takayama, “Optical bistability in photonic crystal microrings with nonlinear dielectric materials,” Opt. Express 16(10), 7525–7539 (2008). [CrossRef] [PubMed]
  2. M. F. Yanik, S. H. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003). [CrossRef]
  3. M. K. Kim, I. K. Hwang, S. H. Kim, H. J. Chang, and Y. H. Lee, “All-optical bistable switching in curved microfiber-coupled photonic crystal resonators,” Appl. Phys. Lett. 90(16), 161118 (2007). [CrossRef]
  4. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002). [CrossRef]
  5. M. Belotti, J. F. Galisteo Lòpez, S. De Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16(15), 11624–11636 (2008). [PubMed]
  6. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005). [CrossRef]
  7. G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006). [CrossRef]
  8. D. Brissinger, B. Cluzel, A. Coillet, C. Dumas, P. Grelu, and F. de Fornel, “Near-field control of optical bistability in a nanocavity,” Phys. Rev. B 80(3), 033103 (2009). [CrossRef]
  9. C. Li, J. F. Wu, and W. C. Xu, “Influence of two-photon absorption on bistable switching in a silicon photonic crystal microcavity,” Opt. Commun. 283(14), 2957–2960 (2010). [CrossRef]
  10. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).
  11. C. Li, J. F. Wu, and W. C. Xu, “Precise control of light frequency via a linear photonic crystal microcavity,” Appl. Opt. 49(14), 2597–2600 (2010). [CrossRef]
  12. A. Taflove, and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, MA, 2000)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited