OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17346–17363

An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications

Antonio Jurado-Navas, José María Garrido-Balsells, Miguel Castillo-Vázquez, and Antonio Puerta-Notario  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17346-17363 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In free space optical (FSO) communication, atmospheric turbulence causes fluctuation in both intensity and phase of the received light signal what may seriously impair the link performance. Additionally, turbulent inhomogeneities may produce optical pulse spreading. In this paper, a simple rate adaptive transmission technique based on the use of variable silence periods and on-off keying (OOK) formats with memory is presented. This technique was previously proposed in indoor unguided optical links by the authors with very good performance. Such transmission scheme is now extensively analyzed in terms of burst error rate, and shown in this paper as an excellent alternative compared with the classical scheme based on repetition coding and pulse-position modulation (PPM), presenting a greater robustness to adverse conditions of turbulence.

© 2010 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(070.4560) Fourier optics and signal processing : Data processing by optical means
(200.1130) Optics in computing : Algebraic optical processing
(290.5930) Scattering : Scintillation
(060.2605) Fiber optics and optical communications : Free-space optical communication
(200.2605) Optics in computing : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 4, 2010
Revised Manuscript: June 16, 2010
Manuscript Accepted: July 1, 2010
Published: July 30, 2010

Antonio Jurado-Navas, José María Garrido-Balsells, Miguel Castillo-Vázquez, and Antonio Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18, 17346-17363 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006). [CrossRef]
  2. A. Belmonte, and J. M. Kahn, “Efficiency of complex modulation methods in coherent free-space optical links,” Opt. Express 18, 3928–3937 (2010). [CrossRef] [PubMed]
  3. A. Belmonte, and J. M. Kahn, “Capacity of coherent free-space optical links using diversity-combining techniques,” Opt. Express 17, 12601–12611 (2009). [CrossRef] [PubMed]
  4. J. J. Laserna, R. Fernández Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17, 10265–10276 (2009). [CrossRef] [PubMed]
  5. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express 17, 7862–7872 (2009). [CrossRef] [PubMed]
  6. X. Zhu, and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002). [CrossRef]
  7. M. Al Naboulsi, and H. Sizun, “Fog attenuation prediction for optical and infrared waves,” SPIE Optical Engineering 43, 319–329 (2004).
  8. A. Jurado Navas, A. García Zambrana, and A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett. 43, 178–179 (2007). [CrossRef]
  9. A. Jurado-Navas, and A. Puerta-Notario, “Generation of Correlated Scintillations on Atmospheric Optical Communications,” J. Opt. Commun. Netw 1, 452–462 (2009). [CrossRef]
  10. A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence,” Opt. Lett. 34, 3662–3664 (2009). [CrossRef] [PubMed]
  11. A. García-Zambrana, and A. Puerta-Notario, “Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems,” IEE Proc. Optoelectron.: Special Issue on Optical Wireless Communications 150, 439–444 (2003).
  12. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, (Bellingham, Washington, 1998).
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media, (Academic Press, New York, 1978).
  14. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, (Jerusalem: Israel Program for Scientific Translations, 1971).
  15. J. W. Strohbehn, “Modern theories in the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J.W. Strohbehn ed. (Springer, New York, 1978), pp. 45–106.
  16. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57, 169–175 (1967). [CrossRef]
  17. R. Lawrence, and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970). [CrossRef]
  18. Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007). [CrossRef]
  19. C. H. Liu, and K. C. Yeh, “Propagation of pulsed beam waves through turbulence, Cloud, Rain or Fog,” J. Opt. Soc. Am. 67, 1261–1266 (1977). [CrossRef]
  20. L. C. Lee, “Wave Propagation in a Random Medium: A Complete set of the moment equations with different wavenumbers,” J. Math. Phys. 15, 1431–1435 (1974). [CrossRef]
  21. C. Y. Young, A. Ishimaru, and L. C. Andrews, “Two-frequency mutual coherence function of a Gaussian beam pulse in weak optical turbulence: an analytic solution,” Appl. Opt. 35, 6522–6526 (1996). [CrossRef] [PubMed]
  22. I. Sreenivasiah, and A. Ishimaru, “Beam wave two-frequency mutual coherence function and pulse propagation in random media: an analytic solution to the plane wave case,” Appl. Opt. 18, 1613–1618 (1979). [CrossRef] [PubMed]
  23. C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt. 37, 7655–7660 (1998). [CrossRef]
  24. A. Christen, E. van Gorsel, and R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol. 27, 1955–1968 (2007). [CrossRef]
  25. A. Christen, M. W. Rotach, and R. Vogt, “Experimental determination of the turbulent kinetic energy budget within and above an Urban Canopy”, Fifth AMS Symposium on the Urban Environment, Vancouver (Canada), 23–27 Aug. 2004.
  26. L. Deutsch and R. Miller, “Burst statistics of Viterbi decoding,” The Telec. and Data Acquisition Progress Report, TDA PR 42–64, 187–193 (1981).
  27. A. García-Zambrana, and A. Puerta-Notario, “Improving PPM schemes in wireless infrared links at high bit rates,” IEEE Commun. Lett. 5, 95–97 (2001). [CrossRef]
  28. J. M. Garrido-Balsells, A. Jurado-Navas, M. Castillo-Vázquez, A.B. Moreno-Garrido and A. Puerta-Notario, are preparing a manuscript to be called “Improving optical wireless links performance by solitonic shape pulses.”
  29. T. Brabec, Ch. Spielmann, and E. Krausz, “Mode locking in solitary lasers,” Opt. Lett. 16, 1961–1963 (1991). [CrossRef] [PubMed]
  30. F. X. Kärtner, D. Kopf, and U. Keller, “Solitary-pulse stabilization and shortening in actively mode-locked lasers,” J. Opt. Soc. Am. B 12, 486–496 (1995). [CrossRef]
  31. Q. Yao, and M. Patzold, “Spatial-temporal characteristics of a half-spheroid model and its corresponding simulation model,” IEEE 59th Vehicular Technology Conference, VTC 2004-Spring, 1, 147–151 (2004).
  32. D. L. Fried, and J. D. Cloud, “Propagation of an infinite plane wave in a randomly inhomogeneous medium,” J. Opt. Soc. Am. 56, 1667–1676 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited