OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17477–17483

Increased OLED radiative efficiency using a directive optical antenna

S. McDaniel and S. Blair  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17477-17483 (2010)
http://dx.doi.org/10.1364/OE.18.017477


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the improvement in efficiency of organic light emitting diodes/displays (OLEDs) by embedding a typical OLED structure within a metallic patch grating resonator. A patch grating resonator is similar to the more familiar Fabry-Perot resonator, except that one mirror of the resonator is a metallic patch grating with a pitch ~ λ/2 that reduces lateral propagation of radiative emission. FDTD simulations of the proposed structure indicate a potential 71% increase in emitted power over that of a reference OLED structure, and an additional 5% gain from adding an ITO spacer adjacent to the metallic electrode layer (for a total 76% increase). Implementation of this structure requires little to no modification of the OLED manufacturing process.

© 2010 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.3670) Optical devices : Light-emitting diodes
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Devices

History
Original Manuscript: May 25, 2010
Revised Manuscript: July 21, 2010
Manuscript Accepted: July 26, 2010
Published: July 30, 2010

Citation
S. McDaniel and S. Blair, "Increased OLED radiative efficiency using a directive optical antenna," Opt. Express 18, 17477-17483 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17477


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997). [CrossRef] [PubMed]
  2. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002). [CrossRef]
  3. Y. Sun, and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low index grids,” Nat. Photon. (London) 2, 483–487 (2008). [CrossRef]
  4. A. P. Feresidis, and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEEE Proc. Microwaves Antennas Propag. 148, 345–350 (2001). [CrossRef]
  5. R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003). [CrossRef]
  6. N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006). [CrossRef]
  7. E. R. Brown, and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1996). [CrossRef]
  8. M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999). [CrossRef]
  9. R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M. M. Sigalas, and K. M. Ho, “Exceptionally directional sources with photonic-bandgap crystals,” J. Opt. Soc. Am. B 18, 1684–1689 (2001). [CrossRef]
  10. S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002). [CrossRef] [PubMed]
  11. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998). [CrossRef]
  12. L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005). [CrossRef]
  13. F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002). [CrossRef]
  14. H. Fischer, and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef] [PubMed]
  15. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008). [CrossRef] [PubMed]
  16. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007). [CrossRef]
  17. D. K. Gifford, and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002). [CrossRef]
  18. C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005). [CrossRef]
  19. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007). [CrossRef] [PubMed]
  20. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998). [CrossRef]
  21. R. Gardelli, G. Donzelli, M. Albani, and F. Capolino, “Design of Patch Antennas and Thinned Array of Patches in a Fabry-Perot Cavity Covered by a Partially Reflective Surface,” in The European Conference on Antennas and Propagation: EuCAP 2006 vol. 626 of ESA Special Publication Oct. 2006.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited