OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17504–17509

Low loss and magnetic field-tunable superconducting terahertz metamaterial

Biaobing Jin, Caihong Zhang, Sebastian Engelbrecht, Andrei Pimenov, Jingbo Wu, Qinyin Xu, Chunhai Cao, Jian Chen, Weiwei Xu, Lin Kang, and Peiheng Wu  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17504-17509 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Superconducting terahertz (THz) metamaterial (MM) made from niobium (Nb) film has been investigated using a continuous-wave THz spectroscopy. The quality factors of the resonance modes at 0.132 THz and 0.418 THz can be remarkably increased when the working temperature is below the superconducting transition temperature of Nb, indicating that the use of superconducting Nb is a possible way to achieve low loss performance of a THz MM. In addition, the tuning of superconducting THz MM by a magnetic field is also demonstrated, which offers an alternative tuning method apart from the existing electric, optical and thermal tuning methods.

© 2010 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: June 1, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 23, 2010
Published: July 30, 2010

Biaobing Jin, Caihong Zhang, Sebastian Engelbrecht, Andrei Pimenov, Jingbo Wu, Qinyin Xu, Chunhai Cao, Jian Chen, Weiwei Xu, Lin Kang, and Peiheng Wu, "Low loss and magnetic field-tunable superconducting terahertz metamaterial," Opt. Express 18, 17504-17509 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lapine and S. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Antennas Propag. 1(1), 3–11 (2007). [CrossRef]
  2. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  5. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008). [CrossRef] [PubMed]
  6. N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009). [CrossRef]
  7. J. B. Pendry, A. Holden, D. D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  8. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010). [CrossRef]
  9. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, J. Han, and W. Zhang, “Superconductor terahertz metamaterial,” arXiv:1003.5169 (2010)
  10. I. Wilke, M. Khazan, C. T. Rieck, P. Kuzel, T. Kaiser, C. Jaekel, and H. Kurz, “Terahertz surface resistance of high temperature superconducting thin films,” J. Appl. Phys. 87(6), 2984–2988 (2000). [CrossRef]
  11. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005). [CrossRef]
  12. M. C. Ricci, H. Xu, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of Superconducting Metamaterials,” IEEE Trans. Appl. Supercond. 17(2), 918–921 (2007). [CrossRef]
  13. W. J. Padilla, A. J. Taylor, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006). [CrossRef] [PubMed]
  14. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  15. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008). [CrossRef]
  16. A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31(5), 634–636 (2006). [CrossRef] [PubMed]
  17. A. V. Pronin, M. Dressel, A. Pimenov, A. Loidl, I. V. Roshchin, and L. H. Greene, “Direct observation of the superconducting energy gap developing in the conductivity spectra of niobium,” Phys. Rev. B 57(22), 14416–14421 (1998). [CrossRef]
  18. S.-Y. Dong, Microwave measurement techniques, (Publishing House of Beijing Institute of Technology, 1988),Ch.4 (in Chinese)
  19. M. J. Lancaster, Passive Microwave Device Applications of High-Temperature Superconductors, (Cambridge University Press, 1996), Ch.7.
  20. M. W. Coffey and J. R. Clem, “Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors,” Phys. Rev. Lett. 67(3), 386–389 (1991). [CrossRef] [PubMed]
  21. C. Peroz and C. Villard, “Flux flow properties of niobium thin films in clean and dirty superconducting limits,” Phys. Rev. B 72(1), 014515 (2005). [CrossRef]
  22. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited