OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17521–17532

Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons

Oscar Azucena, Justin Crest, Jian Cao, William Sullivan, Peter Kner, Donald Gavel, Daren Dillon, Scot Olivier, and Joel Kubby  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17521-17532 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new method to directly measure and correct the aberrations introduced when imaging through thick biological tissue. A Shack-Hartmann wavefront sensor is used to directly measure the wavefront error induced by a Drosophila embryo. The wavefront measurements are taken by seeding the embryo with fluorescent microspheres used as “artificial guide-stars.” The wavefront error is corrected in ten millisecond steps by applying the inverse to the wavefront error on a micro-electro-mechanical deformable mirror in the image path of the microscope. The results show that this new approach is capable of improving the Strehl ratio by 2 times on average and as high as 10 times when imaging through 100 μm of tissue. The results also show that the isoplanatic half-width is approximately 19 μm resulting in a corrected field of view 38 μm in diameter around the guide-star.

© 2010 OSA

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(160.2540) Materials : Fluorescent and luminescent materials
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Adaptive Optics

Original Manuscript: June 10, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 16, 2010
Published: July 30, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Oscar Azucena, Justin Crest, Jian Cao, William Sullivan, Peter Kner, Donald Gavel, Daren Dillon, Scot Olivier, and Joel Kubby, "Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons," Opt. Express 18, 17521-17532 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Van Helden, “The Invention of the Telescope,” Trans. Am. Phil. Soc. 67, 20–21 (1977).
  2. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996). [CrossRef]
  3. M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007). [CrossRef] [PubMed]
  4. M. Schwertner, M. J. Booth, M. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004). [CrossRef]
  5. A. Neil Campbell and Jane B. Reece, Biology, Benjamin Cummings, San Francisco, 2002. [PubMed]
  6. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  7. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford University Press, New York, 1998.
  8. J. Liang*, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949 (1994). [CrossRef]
  9. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef]
  10. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A 365(1861), 2829–2843 (2007). [CrossRef]
  11. M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett. 29(19), 2255–2257 (2004). [CrossRef] [PubMed]
  12. L. Diaz Santana Haro and J. C. Dainty, “Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence,” Opt. Lett. 24(1), 61–63 (1999). [CrossRef]
  13. J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002). [CrossRef] [PubMed]
  14. Invitrogen Corporation, Fluorescence SpectraViewer, http://www.invitrogen.com/site/us/en/home/support/Research-Tools/Fluorescence-SpectraViewer.reg.us.html , Last Accessed: 3/24/2010.
  15. W. F. Rothwell, and W. Sullivan, Fluorescent analysis of Drosophila embryos. In Drosophila Protocols. W. Sullivan, M. Ashburner, and R.S. Hawley, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 141–157 (2000).
  16. S. Guldbrand, C. Simonsson, M. Goksör, M. Smedh, and M. B. Ericson, “Two-photon fluorescence correlation microscopy combined with measurements of point spread function; investigations made in human skin,” Opt. Express 18(15), 15289–15302 (2010). [CrossRef] [PubMed]
  17. A. DeMarais, D. Oldis, and J. M. Quattro, “Matrotrophic Transfer of Fluorescent Microspheres in Poeciliid Fishes,” Copeia 2005(3), 632–636 (2005). [CrossRef]
  18. B. A. Rowning, J. Wells, M. Wu, J. C. Gerhart, R. T. Moon, and C. A. Larabell, “Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs,” Proc. Natl. Acad. Sci. U.S.A. 94(4), 1224–1229 (1997). [CrossRef] [PubMed]
  19. R. F. Kalpin, D. R. Daily, and W. Sullivan, “Use of dextran beads for live analysis of the nuclear division and nuclear envelope breakdown/reformation cycles in the Drosophila embryo,” Biotechniques 17(4), 730–733 (1994). [PubMed]
  20. O. Azucena, J. Cao, J. Crest, W. Sullivan, P. Kner, S. O. Don Gavel, and J. Kubby, “Implementation of adaptive optics in fluorescent microscopy using wavefront sensing and correction,” Proc. SPIE 7595, 75950I (2010). [CrossRef]
  21. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371(1), 323–336 (2006). [CrossRef]
  22. A. Lisa Poyneer, D. T. Gavel, and J. M. Brase, Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19, 2100–2111 (2003). [CrossRef]
  23. J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science, Wiley-Interscience, New Jersey, 2006.
  24. L. A. Poyneer, “Scene-based Shack-Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42(29), 5807–5815 (2003). [CrossRef] [PubMed]
  25. Peter Kner, Jian Cao, Oscar Azucena, Justin Crest, Zvi Kam, John Sedat, David Agard, S. Don Gavel, Joel Olivier, Kubby, and William Sullivan, “Optical Aberrations in Drosophila Embryos,” submitted to J. Biomed. Opt. (2010).
  26. C. R. Vogel and Q. Yang, “Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror,” J. Opt. Soc. Am. A 23(5), 1074–1081 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited