OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17548–17554

Nonlinear similariton tunneling effect in the birefringent fiber

Chaoqing Dai, Yueyue Wang, and Jiefang Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17548-17554 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (6769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive analytical bright and dark similaritons of the generalized coupled nonlinear Schrödinger equations with distributed coefficients. An exact balance condition between the dispersion, nonlinearity and the gain/loss has been obtained. Under this condition, we discuss the nonlinear similariton tunneling effect.

© 2010 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: June 17, 2010
Revised Manuscript: July 22, 2010
Manuscript Accepted: July 24, 2010
Published: July 30, 2010

Chaoqing Dai, Yueyue Wang, and Jiefang Zhang, "Nonlinear similariton tunneling effect in the birefringent fiber," Opt. Express 18, 17548-17554 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa, and F. Tappet, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. anomalous dispersion,” Appl. Phys. Lett. 23, 142–170 (1973). [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and soliton in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics, (New York: Academic Press, 1993).
  4. C. G. L. Tiofacka, A. Mohamadoub, T. C. Kofane, and K. Porsezian, “Exact quasi-soliton solutions and soliton interaction for the inhomogeneous coupled nonlinear Schrödinger equations,” J. Mod. Opt. 57, 261–272 (2010). [CrossRef]
  5. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 056619 (2005). [CrossRef]
  6. V. I. Kruglov, and J. D. Harvey, “Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541–2550 (2006). [CrossRef]
  7. C. Q. Dai, Y. Y. Wang, and J. F. Zhang, “Analytical spatiotemporal localizations for the generalized (3+1)-dimensional nonlinear Schrödinger equation,” Opt. Lett. 35, 1437–1439 (2010). [CrossRef] [PubMed]
  8. A. C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126–1133 (1978). [CrossRef]
  9. V. N. Serkin, and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573–577 (2001). [CrossRef]
  10. J. F. Wang, L. Li, and S. T. Jia, “Nonlinear tunneling of optical similaritons in nonlinear waveguides,” J. Opt. Soc. Am. B 25, 1254–1260 (2008). [CrossRef]
  11. R. C. Yang, and X. L. Wu, “Spatial soliton tunneling, compression and splitting,” Opt. Express 16, 17759–17767 (2008). [CrossRef] [PubMed]
  12. L. Li, Z. H. Li, S. Q. Li, and G. S. Zhou, “Modulation instability and soliton on cw background in inhomogeneous optical fiber media,” Opt. Commun. 234, 169–176 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited