OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17555–17568

Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering

Mikel Sagues and Alayn Loayssa  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17555-17568 (2010)
http://dx.doi.org/10.1364/OE.18.017555


View Full Text Article

Enhanced HTML    Acrobat PDF (3059 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a technique for the generation of broadband optical single sideband modulated signals. The technique is based on optically processing an optical double sideband signal using stimulated Brillouin scattering effect. An unwanted sideband suppression over 40 dB in a broadband range from 50 MHz to 20 GHz is experimentally demonstrated. In addition, we apply the generated optical single sideband signal for the spectral characterization of polarization dependent parameters of optical components. The experimental characterization of the polarization dependent loss and the differential group delay of a phase-shifted fiber Bragg grating is performed in order to demonstrate the feasibility of the technique.

© 2010 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 21, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: July 24, 2010
Published: July 30, 2010

Citation
Mikel Sagues and Alayn Loayssa, "Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering," Opt. Express 18, 17555-17568 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001). [CrossRef]
  2. G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003). [CrossRef]
  3. J. E. Román, M. Y. Frankel, and R. D. Esman, “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23(12), 939–941 (1998). [CrossRef]
  4. R. Hernández, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004). [CrossRef]
  5. A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004). [CrossRef] [PubMed]
  6. D. J. Krause, J. C. Cartledge, L. Jakober, and K. Roberts, “Measurement of passive optical components using a carrier and single sideband,” in Proc. Optical Fiber Communications Conference, (OFC’2006) paper OFN5 (2006).
  7. T. Kawanishi, T. Sakamoto, and M. Izutsu, “Optical filter characterization by using optical frequency sweep technique with a single sideband modulator,” IEICE Electron. Express 3(3), 34–38 (2006). [CrossRef]
  8. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, “Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion,” Appl. Opt. 44(34), 7282–7286 (2005). [CrossRef] [PubMed]
  9. B. L. Heffner, “Deterministic, analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451–454 (1992). [CrossRef]
  10. B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4,1066–1069 (1992). [CrossRef]
  11. R. M. Craig, “Accurate Spectral Characterization of Polarization-Dependent Loss,” J. Lightwave Technol. 21(2), 432–437 (2003). [CrossRef]
  12. P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35(18), 1578–1579 (1999). [CrossRef]
  13. Y. Shi, L. Yan, and X. S. Yao, “Automatic Maximum-Minimum Search Method for Accurate PDL and DOP Characterization,” J. Lightwave Technol. 24(11), 4006–4012 (2006). [CrossRef]
  14. M. Sagues, M. Pérez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16(20), 16181–16188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16181 . [CrossRef] [PubMed]
  15. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997). [CrossRef]
  16. T. Fujiwara, and K. Kikushima, “140 Carrier, 20GHz SCM Signal Transmission across 200km SMF by Two-step Sideband Suppression Scheme in Optical SSB Modulation,” in Proc. Optical Fiber Communications Conference, (OFC’2007) paper OME2 (2007).
  17. K. Takano, N. Hanzawa, S. Tanji, and K. Nakagawa, “Experimental Demonstration of Optically Phase-Shifted SSB Modulation with Fiber-Based Optical Hilbert Transformers,” in Proc. Optical Fiber Communications Conference, (OFC’2007) paper JThA48 (2007).
  18. K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001). [CrossRef]
  19. T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004). [CrossRef]
  20. D. Fonseca, A. V. Cartaxo, and P. Monteiro, “Adaptive Optoelectronic Filter for Improved Optical Single Sideband Generation,” IEEE Photon. Technol. Lett. 18(2), 415–417 (2006). [CrossRef]
  21. H. Kim, “EML-Based Optical Single Sideband Transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008). [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics (San Diego: Academic Press, 3rd Edition, 2001).
  23. X. S. Yao, “Brillouin Selective Sideband Amplification of Microwave Photonic Signals,” IEEE Photon. Technol. Lett. 10(1), 138–141 (1998). [CrossRef]
  24. Y. Shen, X. Zhang, and K. Chen, “Modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005). [CrossRef]
  25. M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1395 . [CrossRef] [PubMed]
  26. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS slow light in optical fibers,” in Proc. Optical Fiber Communications Conference, (OFC’2006), paper PDP1, (2006).
  27. M. Sagues, G. Beloki, and A. Loayssa, “Broadband Swept Optical Single-sideband Modulation Generation for Spectral Characterization of Optical Components,” European Conference on Optical Communication (ECOC'2007), paper 6.6.6, 2007.
  28. W. Kaiser, and M. Maier, “Stimulated Rayleigh, Brillouin and Raman Spectroscopy,” Laser Handbook, Vol. 2, Chap. E2 (Amsterdam: North-Holland, 1972).
  29. M. Sagues, A. Loayssa, and J. Capmany, “Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007). [CrossRef]
  30. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006). [CrossRef]
  31. R. Montgomery and R. DeSalvo, “A Novel Technique for Double Sideband Suppressed Carrier Modulation of Optical Fields,” IEEE Photon. Technol. Lett. 7(4), 434–436 (1995). [CrossRef]
  32. M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997). [CrossRef]
  33. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As(2)Se(3) chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5860 . [CrossRef] [PubMed]
  34. D. Derickson, Fiber Optics Test and Measurement (Prentice Hall PTR, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited