OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17631–17639

Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies

Vivek Raghunathan, Winnie N. Ye, Juejun Hu, Tomoyuki Izuhara, Jurgen Michel, and Lionel Kimerling  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17631-17639 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3551 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design criteria and performance of Si ring resonators for passive athermal applications in wavelength division multiplexing (WDM). The waveguide design rules address i) positive-negative thermo-optic (TO) composite structures, ii) resonant wavelength dependent geometry to achieve constant confinement factor (Γ), and iii) observation of small residual second order effects. We develop exact design requirements for a temperature dependent resonant wavelength shift (TDWS) of 0 pm/K and present prototype TDWS performance of 0.5pm/K. We evaluate the materials selection tradeoffs between high-index contrast (HIC) and low-index contrast (LIC) systems and show, remarkably, that FSR and footprint become comparable under the constraint of athermal design.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(160.5470) Materials : Polymers
(160.6840) Materials : Thermo-optical materials
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: May 24, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: July 20, 2010
Published: August 2, 2010

Vivek Raghunathan, Winnie N. Ye, Juejun Hu, Tomoyuki Izuhara, Jurgen Michel, and Lionel Kimerling, "Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies," Opt. Express 18, 17631-17639 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Rasras, D. M. Gill, S. S. Patel, K. Y. Tu, Y. K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration Of A Fourth-Order Pole-Zero Optical Filter Integrated Using CMOS Processes,” J. Lightwave Technol. 25(1), 87–92 (2007). [CrossRef]
  2. Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55µm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34(4), 367–369 (1998). [CrossRef]
  3. Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.3µm wavelength by an athermal waveguide,” Electron. Lett. 32(21), 1998–2000 (1996). [CrossRef]
  4. S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature Insensitive Vertically Coupled Microring Resonator Add/Drop Filters by Means of a Polymer Overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999). [CrossRef]
  5. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator with a Polymeric overlayer,” J. Lightwave Technol. 25(8), 2236–2243 (2007). [CrossRef]
  6. J.-M. Lee, D.-J. Kim, G.-H. Kim,, O-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguides using slot structure,” Opt. Express 14, 1645–1652 (2008). [CrossRef]
  7. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  8. B. Guha, B. B. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  9. H. Huang, S.-T. Ho, D. Huang, Y. Tu, and W. Liu, “Design of temperature-independent arrayed waveguide gratings based on the combination of multiple types of waveguide,” Appl. Opt. 49(16), 3025–3034 (2010). [CrossRef] [PubMed]
  10. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 882–884 (2008). [CrossRef]
  11. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). [CrossRef] [PubMed]
  12. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  13. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009). [CrossRef]
  14. G. Cocorullo, F. G. Della Corte, L. Moretti, I. Rendina, and A. Rubino, “Measurement of the thermo-optic coefficient of a-Si:H at the wavelength of 1500 nm from room temperature to 200°C,” J. Non-Cryst. Solids 299–302, 310–313 (2002). [CrossRef]
  15. N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, “Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,” J. Lightwave Technol. 20(11), 1976–1980 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited