OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17640–17650

Semiclassical model for attosecond angular streaking

M. Smolarski, P. Eckle, U. Keller, and R. Dörner  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17640-17650 (2010)
http://dx.doi.org/10.1364/OE.18.017640


View Full Text Article

Enhanced HTML    Acrobat PDF (1351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Attosecond angular streaking is a new technique to achieve unsurpassed time accuracy of only a few attoseconds. Recently this has been successfully used to set an upper limit on the electron tunneling delay time in strong laser field ionization. The measurement technique can be modeled with either the time-dependent Schrödinger equation (TDSE) or a more simple semiclassical approach that describes the process in two steps in analogy to the three-step model in high harmonic generation (HHG): step one is the tunnel ionization and step two is the classical motion in the strong laser field. Here we describe in detail a semiclassical model which is based on the ADK theory for the tunneling step, with subsequent classical propagation of the electron in the laser field. We take into account different ellipticities of the laser field and a possible wavelength-dependent ellipticity that is typically observed for pulses in the two-optical-cycle regime. This semiclassical model shows excellent agreement with the experimental result.

© 2010 OSA

OCIS Codes
(000.2700) General : General science

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 25, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: July 23, 2010
Published: August 2, 2010

Citation
M. Smolarski, P. Eckle, U. Keller, and R. Dörner, "Semiclassical model for attosecond angular streaking," Opt. Express 18, 17640-17650 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17640


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Soviet Phys. JETP 20, 1307 (1965).
  2. H. R. Reiss, “Limits on tunneling theories of strong-field ionization,” Phys. Rev. Lett. 101(4), 043002 (2008). [CrossRef] [PubMed]
  3. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993). [CrossRef] [PubMed]
  4. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999). [CrossRef]
  5. G. G. Paulus, ““A Meter of the “Absolute” Phase of Few-Cycle Laser Pulses,” Laser Phys. 15, 843–854 (2005).
  6. P. Dietrich, F. Krausz, and P. B. Corkum, “Determining the absolute carrier phase of a few-cycle laser pulse,” Opt. Lett. 25(1), 16–18 (2000). [CrossRef]
  7. P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, “Attosecond angular streaking,” Nat. Phys. 4(7), 565–570 (2008). [CrossRef]
  8. C. Smeenk, L. Arissian, A. Staudte, D. M. Villeneuve, and P. B. Corkum, “Momentum space tomographic imaging of photoelectrons,” J. Phys. B 42(18), 185402 (2009). [CrossRef]
  9. R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechanics,” Rev. Mod. Phys. 20(2), 367–387 (1948). [CrossRef]
  10. P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H. Walther, R. Kopold, W. Becker, D. B. Milosević, A. Sanpera, and M. Lewenstein, “Feynman’s path-integral approach for intense-laser-atom interactions,” Science 292(5518), 902–905 (2001). [CrossRef] [PubMed]
  11. M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).
  12. T. Gabriel, “Dispersion-Free Reflective Phase Retarder for Few-Cycle Femtosecond Pulses”, Paper FB6, Optical Interference Coatings Topical Meeting, Tuscon (AZ), June 6–11 2010.
  13. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997). [CrossRef]
  14. C. Iaconis and I. A. Walmsley, “Self-Referencing Spectral Interferometry for Measuring Ultrashort Optical Pulses,” IEEE J. Quantum Electron. 35(4), 501–509 (1999). [CrossRef]
  15. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high-energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997). [CrossRef]
  16. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004). [CrossRef]
  17. G. Szivessy and C. Münster, “Über die Prüfung der Gitteroptik bei aktiven Kristallen,” Ann. Phys. 412(7), 703–736 (1934). [CrossRef]
  18. S. C. McClain, L. W. Hillman, and R. A. Chipman, “Polarization ray tracing in anisotropic optically active media. I. Algorithms,” J. Opt. Soc. Am. 10(11), 2371–2382 (1993). [CrossRef]
  19. S. C. McClain, L. W. Hillman, and R. A. Chipman, “Polarization ray tracing in anisotropic optically active media. II. Theory and physics,” J. Opt. Soc. Am. A 10(11), 2383–2393 (1993). [CrossRef]
  20. E. D. Palik, “Handbook of Optical Constants of Solids,” (Academic Press, 1985).
  21. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984). [CrossRef] [PubMed]
  22. P. Antoine, A. L’Huillier, M. Lewenstein, P. Salières, and B. Carré, “Theory of high-order harmonic generation by an elliptically polarized laser field,” Phys. Rev. A 53(3), 1725–1745 (1996). [CrossRef] [PubMed]
  23. N. B. Delone and V. P. Krainov, “Energy and angular electron spectra for the tunnel ionization of atoms by strong low-frequency radiation,” J. Opt. Soc. Am. B 8(6), 1207–1211 (1991). [CrossRef]
  24. H. R. Schwarz, “Numerische Mathematik,” B. G. Teubner, ed. (Verlag, 1997).
  25. M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446(7136), 627–632 (2007). [CrossRef] [PubMed]
  26. C. M. Maharjan, A. S. Alnaser, X. M. Tong, B. Ulrich, P. Ranitovic, S. Ghimire, Z. Chang, I. V. Litvinyuk, and C. L. Cocke, “Momentum imaging of doubly charged ions of Ne and Ar in the sequential ionization region,” Phys. Rev. A 72, 041403(R) (2005) [CrossRef]
  27. X. M. Tong and C. D. Lin, “Empirical formula for statistic field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B 38(15), 2593–2600 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2664 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited