OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17658–17665

Superluminal ring laser for hypersensitive sensing

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17658-17665 (2010)
http://dx.doi.org/10.1364/OE.18.017658


View Full Text Article

Enhanced HTML    Acrobat PDF (1056 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The group velocity of light becomes superluminal in a medium with a tuned negative dispersion, using two gain peaks, for example. Inside a laser, however, the gain is constant, equaling the loss. We show here that the effective dispersion experienced by the lasing frequency is still sensitive to the spectral profile of the unsaturated gain. In particular, a dip in the gain profile leads to a superluminal group velocity for the lasing mode. The displacement sensitivity of the lasing frequency is enhanced by nearly five orders of magnitude, leading to a versatile sensor of hyper sensitivity.

© 2010 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3370) Lasers and laser optics : Laser gyroscopes
(140.3560) Lasers and laser optics : Lasers, ring
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 28, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: July 25, 2010
Published: August 2, 2010

Citation
H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, "Superluminal ring laser for
hypersensitive sensing," Opt. Express 18, 17658-17665 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007). [CrossRef]
  2. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008). [CrossRef]
  3. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007). [CrossRef] [PubMed]
  4. M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19), 3133–3147 (2008). [CrossRef]
  5. A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Miiller, and R. H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997). [CrossRef]
  6. R. H. Rinkleff and A. Wicht, “The concept of white light cavities using atomic phase coherence,” Phys. Scr. T 118, 85–88 (2005). [CrossRef]
  7. R. Fleischhaker and J. Evers, “Four wave mixing enhanced white-light cavity,” Phys. Rev. A 78(5), 051802 (2008). [CrossRef]
  8. H. Wu and M. Xiao, “White-light cavity with competing linear and nonlinear dispersions,” Phys. Rev. A 77(3), 031801 (2008). [CrossRef]
  9. A. Rocco, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Anomalous dispersion of transparent atomic two- and three-level ensembles,” Phys. Rev. A 66(5), 053804 (2002). [CrossRef]
  10. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000). [CrossRef] [PubMed]
  11. J. S. Toll, “Causality and the dispersion relation: logical foundation,” Phys. Rev. 104(6), 1760–1770 (1956). [CrossRef]
  12. H. C. Bolton and G. J. Troup, “The modification of the Kronig-Kramers relations under saturation conditions,” Philos. Mag. 19(159), 477–485 (1969). [CrossRef]
  13. G. J. Troup and A. Bambini, “The use of the modified Kramers-Kronig relation in the rate equation approach of laser theory,” Phys. Lett. 45A, 393 (1973).
  14. H. Yum, and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” to appear in J. Opt. (preprint can be viewed at http://arxiv.org/abs/1003.3686 )
  15. M. O. Scully, and W. E. Lamb, Laser Physics, (Westview Press, Boulder, CO, 1974).
  16. M. O. Scully, and M. S. Zubairy, Quantum Optics, (Cambridge University Press, New York, NY, 1997).
  17. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003). [CrossRef] [PubMed]
  18. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited