OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17672–17683

Modelling of sub-wavelength THz sources as Gaussian apertures

Hungyen Lin, Christophe Fumeaux, Bernd Michael Fischer, and Derek Abbott  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17672-17683 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1655 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The THz emission point on a nonlinear electro-optical crystal for generating broadband THz radiation is modeled as a radiating Gaussian aperture. With the wavelengths of the infrared pump beam being much smaller than the wavelength components of the generated THz pulse, a THz sub-wavelength radiating aperture with Gaussian profile is effectively created. This paper comprehensively investigates Gaussian apertures in focused THz radiation generation in electro-optical crystals and illustrates the break-down of the paraxial approximation at low THz frequencies. The findings show that the shape of the radiation pattern causes a reduction in detectable THz radiation and hence contributes significantly to low signal-to-noise ratio in THz radiation generation. Whilst we have demonstrated the findings on optical rectification in this paper, the model may apply without a loss of generality to other types of apertures sources in THz radiation generation.

© 2010 Optical Society of America

OCIS Codes
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

Original Manuscript: June 9, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 23, 2010
Published: August 2, 2010

Hungyen Lin, Christophe Fumeaux, Bernd M. Fischer, and Derek Abbott, "Modelling of sub-wavelength THz sources as Gaussian apertures," Opt. Express 18, 17672-17683 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mourou, C. V. Stancampiano, V. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981). [CrossRef]
  2. C. Fattinger, and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988). [CrossRef]
  3. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962). [CrossRef]
  4. X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett. 61, 2764–2766 (1992). [CrossRef]
  5. A. Rice, Y. Jin, X. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from _110_ zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994). [CrossRef]
  6. Q. Chen, and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999). [CrossRef]
  7. T. Yuan, S. P. Mickan, J. Xu, D. Abbott, and X.-C. Zhang “Towards an apertureless electro-optic T-ray microscope,” CLEO, 637 – 638 (2002).
  8. R. Lecaque, S. Gresillon, and C. Boccara, “THz emission Microscopy with sub-wavelength broadband source,” Opt. Express 16, 4731–4738 (2008). [CrossRef] [PubMed]
  9. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007). [CrossRef]
  10. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991). [CrossRef]
  11. S. J. Orfanidis, Electromagnetic Waves and Antennas (http://www.ece.rutgers.edu/orfanidi/ewa/ch17.pdf, 2008).
  12. C. Fumeaux, D. Baumann, S. Atakaramians, and E. Li “Considerations on paraxial Gaussian beam source conditions for time-domain full-wave simulations,” 25th Annual Review of Progress in Applied Computational Electromagnetics, 401 – 406 (2009).
  13. J. Xu, and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (1999). [CrossRef]
  14. G. Dakovski, B. Kubera, and J. Shan, “Localized terahertz generation via optical rectification in ZnTe,” J. Opt. Soc. Am. B 22, 1667–1670 (2005). [CrossRef]
  15. Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422–426 (2006). [CrossRef]
  16. T. Hattori, K. Tukamoto, R. Rungsawang, and H. Nakatsuka, “Knife edge measurement of tightly focused terahertz pulses,” The 8th International Workshop on Femtosecond Technology, 1 (2001).
  17. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 1997).
  18. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  19. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  20. X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90, 141104 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited