OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17684–17698

Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays

Jia Li, Ying Gu, and Qihuang Gong  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17684-17698 (2010)
http://dx.doi.org/10.1364/OE.18.017684


View Full Text Article

Enhanced HTML    Acrobat PDF (1098 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the coupled dipole method to a semianalytical method that can be applied with high efficiency and accuracy to metallic heterogeneous binary particle arrays. The spectrum of the binary structure that we propose, which is composed of alternating silver and gold spherical nanoparticles, is characterized by additional geometric resonances near diffraction orders that originate from the real periodicity (i.e., twice the interparticle distance). The new diffraction orders can force the induced polarization of the heterogeneous particles out of phase, so that light scattered from them interferes destructively, which leads to geometric resonances imposed by destructive interference. By varying the constituent particle sizes, both the width and intensity of the additional geometric resonances can be effectively tuned. In particular, the Fano profiles of the geometric resonances can be tuned and are inverted when the contrast in scattering capabilities of the two types of constituent particles changes. The extensive tunability of the binary structure makes itself highly desirable for design of plasmon-based chemical and biological sensors.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 18, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 10, 2010
Published: August 2, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Ying GU, Jia Li, and Qihuang Gong, "Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays," Opt. Express 18, 17684-17698 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17684


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B 3, 430–440 (1986). [CrossRef]
  2. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004). [CrossRef] [PubMed]
  3. S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004). [CrossRef] [PubMed]
  4. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005). [CrossRef]
  5. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008). [CrossRef] [PubMed]
  6. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008). [CrossRef] [PubMed]
  7. M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982). [CrossRef]
  8. R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976). [CrossRef]
  9. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  10. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008). [CrossRef] [PubMed]
  11. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007). [CrossRef]
  12. S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010) [CrossRef] [PubMed]
  13. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  14. U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981). [CrossRef]
  15. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993). [CrossRef]
  16. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B,  107, 7343–7350 (2003). [CrossRef]
  17. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  18. D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik (Academic Press, New York, 1985), pp. 350.
  19. A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties, ” J. Phys. Chem. B 104, 460–467 (2000). [CrossRef]
  20. S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ”J. Chem. Phys. 122, 097102 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited