OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17699–17708

Resonance lineshapes in two-dimensional Fourier transform spectroscopy

Mark E. Siemens, Galan Moody, Hebin Li, Alan D. Bristow, and Steven T. Cundiff  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17699-17708 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1866 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive an analytical form for resonance lineshapes in two-dimensional (2D) Fourier transform spectroscopy. Our starting point is the solution of the optical Bloch equations for a two-level system in the 2D time domain. Application of the projection-slice theorem of 2D Fourier transforms reveals the form of diagonal and cross-diagonal slices in the 2D frequency data for arbitrary inhomogeneity. The results are applied in quantitative measurements of homogeneous and inhomogeneous broadening of multiple resonances in experimental data.

© 2010 OSA

OCIS Codes
(300.3700) Spectroscopy : Linewidth
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Original Manuscript: June 22, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 21, 2010
Published: August 2, 2010

Mark E. Siemens, Galan Moody, Hebin Li, Alan D. Bristow, and Steven T. Cundiff, "Resonance lineshapes in two-dimensional
Fourier transform spectroscopy," Opt. Express 18, 17699-17708 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press – Oxford, 1988).
  2. K. Wuthrich, NMR of Proteins and Nucleic Acids (John Wiley and Sons, 1986).
  3. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003). [CrossRef] [PubMed]
  4. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008). [CrossRef] [PubMed]
  5. M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8219–8224 (2000). [CrossRef] [PubMed]
  6. O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86(10), 2154–2157 (2001). [CrossRef] [PubMed]
  7. J. Hybl, A. Ferro, and D. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001). [CrossRef]
  8. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005). [CrossRef] [PubMed]
  9. S. T. Cundiff, T. Zhang, A. D. Bristow, D. Karaiskaj, and X. Dai, “Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells,” Acc. Chem. Res. 42(9), 1423–1432 (2009). [CrossRef] [PubMed]
  10. S. T. Cundiff, “Coherent spectroscopy of semiconductors,” Opt. Express 16(7), 4639–4664 (2008). [CrossRef] [PubMed]
  11. W. Demtroder, Laser Spectroscopy (Springer, 2002).
  12. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  13. T. Yajima and Y. Taira, “Spatial Optical Parametric Coupling of Picosecond Light Pulses and Transverse Relaxation effect in Resonant Media,” J. Phys. Soc. Jpn. 47(5), 1620–1626 (1979). [CrossRef]
  14. E. Bartholdi and R. R. Ernst, “Fourier Spectroscopy and the Causality Principle,” J. Magn. Reson. 11, 9–19 (1973).
  15. S. M. Gallagher Faeder and D. M. Jonas, “Phase-resolved time-domain nonlinear optical signals,” Phys. Rev. A 62(3), 033820 (2000). [CrossRef]
  16. A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A 104(18), 4247–4255 (2000). [CrossRef]
  17. K. Kwac and M. Cho, “Molecular dynamics simulation study of N-methylacetamide in water. II. Two-dimensional infrared pump-probe spectra,” J. Chem. Phys. 119(4), 2256–2263 (2003). [CrossRef]
  18. K. Lazonder, M. S. Pshenichnikov, and D. A. Wiersma, “Easy interpretation of optical two-dimensional correlation spectra,” Opt. Lett. 31(22), 3354–3356 (2006). [CrossRef] [PubMed]
  19. I. Kuznetsova, T. Meier, S. T. Cundiff, and P. Thomas, “Determination of homogeneous and inhomogeneous broadening in semiconductor nanostructures by two-dimensional Fourier-transform optical spectroscopy,” Phys. Rev. B 76(15), 153301 (2007). [CrossRef]
  20. I. Kuznetsova, P. Thomas, T. Meier, T. Zhang, and S. T. Cundiff, “Determination of homogeneous and inhomogeneous broadenings of quantum-well excitons by 2DFTS: An experiment-theory comparison,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(2), 445–448 (2009).
  21. K. Nagayama, P. Bachmann, K. Wuthrich, and R. R. Ernst, “The Use of Cross-Sections and of Projections in Two-dimensional NMR Spectroscopy,” J. Magn. Reson. 31, 133–148 (1978).
  22. J. W. Goodman, Introduction to Fourier Optics,” (McGraw-Hill, 1996).
  23. A. D. Bristow, D. Karaiskaj, X. Dai, R. P. Mirin, and S. T. Cundiff, “Polarization dependence of semiconductor exciton and biexciton contributions to phase-resolved optical two-dimensional Fourier-transform spectra,” Phys. Rev. B 79(16), 1–4 (2009). [CrossRef]
  24. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Instrum. 80(7), 073108 (2009). [CrossRef] [PubMed]
  25. D. S. Chemla and J. Shah, “Many-body and correlation effects in semiconductors,” Nature 411(6837), 549–557 (2001). [CrossRef] [PubMed]
  26. X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional fourier transform spectroscopy,” Phys. Rev. Lett. 96(5), 057406 (2006). [CrossRef] [PubMed]
  27. A. D. Bristow, T. Zhang, M. E. Siemens, R. P. Mirin, and S. T. Cundiff, “Dephasing in Weakly Disordered GaAs Quantum Wells,” to be submitted.
  28. S. G. Carter, Z. Chen, and S. T. Cundiff, “Echo peak-shift spectroscopy of non-Markovian exciton dynamics in quantum wells,” Phys. Rev. B 76(12), 121303 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited