OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17709–17718

Autoresonant propagation of incoherent light-waves

Assaf Barak, Yuval Lamhot, Lazar Friedland, and Mordechai Segev  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17709-17718 (2010)
http://dx.doi.org/10.1364/OE.18.017709


View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study, theoretically and experimentally, the evolution of optical waves with randomly-fluctuating phases in a spatially chirped nonlinear directional coupler. As the system crosses its linear resonance, we observe collective self-phase-locking (autoresonance) of all mutually-incoherent waves, each with its own pump, and simultaneous amplification until the pumps are exhausted. We show that the autoresonant transition in this system exhibits a sharp threshold, common to all mutually-incoherent waves comprising the light beam.

© 2010 OSA

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 23, 2010
Revised Manuscript: July 21, 2010
Manuscript Accepted: July 21, 2010
Published: August 2, 2010

Citation
Assaf Barak, Yuval Lamhot, Lazar Friedland, and Mordechai Segev, "Autoresonant propagation of incoherent
light-waves," Opt. Express 18, 17709-17718 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17709


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Silberberg and G. I. Stegeman, “Nonlinear Coupling of Waveguide Modes,” Appl. Phys. Lett. 50(13), 801–803 (1987). [CrossRef]
  2. O. Cohen, X. Zhang, A. L. Lytle, T. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Grating-Assisted Phase Matching in Extreme Nonlinear Optics,” Phys. Rev. Lett. 99(5), 053902 (2007). [CrossRef] [PubMed]
  3. G. Bartal, O. Manela, and M. Segev, “Spatial Four Wave Mixing in Nonlinear Periodic Structures,” Phys. Rev. Lett. 97(7), 073906 (2006). [CrossRef] [PubMed]
  4. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  5. S. Somekh and A. Yariv, “Phase‐matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21(4), 140–141 (1972). [CrossRef]
  6. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008). [CrossRef]
  7. S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. 76(20), 201101 (2007). [CrossRef]
  8. Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008). [CrossRef] [PubMed]
  9. F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett. 34(16), 2405–2407 (2009). [CrossRef] [PubMed]
  10. A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009). [CrossRef] [PubMed]
  11. L. Friedland, “Autoresonant Solutions of Nonlinear Schrodinger Equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3865–3875 (1998). [CrossRef]
  12. J. Fajans and L. Friedland, “Autoresonant (nonstationary) Excitation of Pendulums, Plutinos, Plasmas, and Other Nonlinear Oscillators,” Am. J. Phys. 69(10), 1096–1102 (2001). [CrossRef]
  13. M. Deutsch, B. Meerson, and J. E. Golub, “Strong plasma wave excitation by a “chirped” laser beat wave,” Phys. Fluids B 3(7), 1773–1780 (1991). [CrossRef]
  14. M. S. Livingston, High-Energy Particle Accelerators (Interscience, New York, 1954).
  15. L. Friedland and A. G. Shagalov, “Resonant formation and control of 2D symmetric vortex waves,” Phys. Rev. Lett. 85(14), 2941–2944 (2000). [CrossRef] [PubMed]
  16. L. Friedland and A. G. Shagalov, “Excitation of Solitons by Adiabatic Multiresonant Forcing,” Phys. Rev. Lett. 81(20), 4357–4360 (1998). [CrossRef]
  17. L. Friedland, “Migration timescale thresholds for resonant capture in the Plutino problem,” Astrophys. J. 547(1), L75–L79 (2001). [CrossRef]
  18. A. I. Nicolin, M. H. Jensen, and R. Carretero-González, “Mode locking of a driven Bose-Einstein condensate,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036208 (2007). [CrossRef] [PubMed]
  19. O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008). [CrossRef] [PubMed]
  20. M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Theory of Self-Trapped Spatially Incoherent Light Beams,” Phys. Rev. Lett. 79(25), 4990–4993 (1997). [CrossRef]
  21. M. Mitchell, Z. Chen, M. Shih, and M. Segev, “Self-Trapping of Partially Spatially Incoherent Light,” Phys. Rev. Lett. 77(3), 490–493 (1996). [CrossRef] [PubMed]
  22. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994). [CrossRef] [PubMed]
  23. M. Segev, M.- Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13(4), 706–718 (1996). [CrossRef]
  24. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 ), 046602 (2002). [CrossRef] [PubMed]
  25. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003). [CrossRef] [PubMed]
  26. H. Buljan, A. Siber, M. Soljacic, and M. Segev, “Propagation of incoherent “white” light and modulation instability in non-instantaneous nonlinear media,” Phys. Rev. E. Rapid Communication 66, 35601 (2002).
  27. T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett. 93(22), 223901 (2004). [CrossRef] [PubMed]
  28. T. H. Coskun, A. G. Grandpierre, D. N. Christodoulides, and M. Segev, “Coherence enhancement of spatially incoherent light beams through soliton interactions,” Opt. Lett. 25(11), 826–828 (2000). [CrossRef]
  29. A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86(10), 2010–2013 (2001). [CrossRef] [PubMed]
  30. A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056605 (2002). [CrossRef]
  31. A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046606 (2005). [CrossRef] [PubMed]
  32. H. Buljan, M. Segev, and A. Vardi, “Incoherent matter-wave solitons and pairing instability in an attractively interacting Bose-Einstein condensate,” Phys. Rev. Lett. 95(18), 180401 (2005). [CrossRef] [PubMed]
  33. W. Tong, M. Wu, L. D. Carr, and B. A. Kalinikos, “Formation of random dark envelope solitons from incoherent waves,” Phys. Rev. Lett. 104(3), 037207 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited