OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17736–17747

Studies of electromagnetically induced transparency in metamaterials

Hua Xu, Yuehui Lu, YoungPak Lee, and Byoung Seung Ham  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17736-17747 (2010)
http://dx.doi.org/10.1364/OE.18.017736


View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied electromagnetically induced transparency (EIT) in metamaterials for various schemes corresponding to those in an atomic medium. We numerically calculate a symmetric dolmen scheme of metamaterials corresponding to a tripod model of EIT-based optical switching and illustrate plasmonic double dark resonances. Our study provides a fundamental understanding and useful guidelines in using metamaterials for plasmonic-based all-optical information processing.

© 2010 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: June 28, 2010
Revised Manuscript: July 25, 2010
Manuscript Accepted: July 27, 2010
Published: August 2, 2010

Citation
Hua Xu, Yuehui Lu, YoungPak Lee, and Byoung Seung Ham, "Studies of electromagnetically induced transparency in metamaterials," Opt. Express 18, 17736-17747 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009). [CrossRef]
  3. T. Ha, Th. Enderle, D. F. Ogletree, D. S. Chemla, P. R. Selvin, and S. Weiss, “Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor,” Proc. Natl. Acad. Sci. U.S.A. 93(13), 6264–6268 (1996). [CrossRef] [PubMed]
  4. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  5. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  6. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  7. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal,” Opt. Lett. 22(15), 1138–1140 (1997). [CrossRef] [PubMed]
  8. M. C. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89(18), 186401 (2002). [CrossRef] [PubMed]
  9. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherence media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]
  10. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995). [CrossRef] [PubMed]
  11. S. E. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999). [CrossRef]
  12. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  13. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002). [CrossRef] [PubMed]
  14. M. G. Payne and L. Deng, “Quantum entanglement of Fock states with perfectly efficient ultraslow single-probe photon four-wave mixing,” Phys. Rev. Lett. 91(12), 123602 (2003). [CrossRef] [PubMed]
  15. B. S. Ham and J. Hahn, “Observation of ultraslow light-based photon logic gates: NAND/OR,” Appl. Phys. Lett. 94(10), 101110 (2009). [CrossRef]
  16. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  17. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  18. A. Taflove, and S. C. Hagness, Computational electrodynamics: The finite-difference time–domain method (Artech, 2000).
  19. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006). [CrossRef] [PubMed]
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef] [PubMed]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmonic metamaterial with coupling induced transparency,” arXiv: 0801.1536v1 [physics. optics].
  23. http://ab-initio.mit.edu/wiki/index.php/Dielectric_materials_in_Meep .
  24. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  25. Q. H. Park, “Optical antennas and plasmonics,” Contemp. Phys. 50(2), 407–423 (2009). [CrossRef]
  26. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008). [CrossRef] [PubMed]
  27. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  28. D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008). [CrossRef]
  29. H. Xu, and B. S. Ham, “Plasmon-induced photonic switching in a metamaterial,” arXiv: 0905.3102v4 [quant-ph].
  30. B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84(18), 4080–4083 (2000). [CrossRef] [PubMed]
  31. B. S. Ham, “Experimental demonstration of all-optical 1x2 quantum routing,” Appl. Phys. Lett. 85(6), 893–896 (2004). [CrossRef]
  32. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998). [CrossRef]
  33. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999). [CrossRef]
  34. J. Harden, A. Joshi, and J. D. Serna, arXiv:1006.5167v1 [quant-ph].
  35. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited