OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17749–17755

A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time

Byoung S. Ham  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17749-17755 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lengthening of photon storage time has been an important issue in quantum memories for long distance quantum communications utilizing quantum repeaters. Atom population transfer into an auxiliary spin state has been adapted to increase photon storage time of photon echoes. In this population transfer process phase shift to the collective atoms is inevitable, where the phase recovery condition must be multiple of 2π to satisfy rephasing mechanism. Recent adaptation of the population transfer method to atomic frequency comb (AFC) echoes [Afzelius et al., Phys. Rev. Lett. 104, 040503 (2010)], where the population transfer method is originated in a controlled reversible inhomogeneous broadening technique [Moiseev and Kroll, Phys. Rev. Lett. 87, 173601 (2001)], however, shows contradictory phenomenon violating the phase recovery condition. This contradiction in AFC is reviewed as a general case of optical locking applied to a dilute medium for an optical depth-dependent coherence leakage resulting in partial retrieval efficiency.

© 2010 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.1670) Quantum optics : Coherent optical effects
(300.6240) Spectroscopy : Spectroscopy, coherent transient

ToC Category:
Quantum Optics

Original Manuscript: April 30, 2010
Revised Manuscript: July 16, 2010
Manuscript Accepted: July 21, 2010
Published: August 3, 2010

Byoung S. Ham, "A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time," Opt. Express 18, 17749-17755 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef] [PubMed]
  2. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007). [CrossRef] [PubMed]
  3. M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247(4-6), 393–403 (2005). [CrossRef]
  4. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010). [CrossRef] [PubMed]
  5. B. S. Ham, and J. Hahn, “Phase locked photon echoes for near-perfect retrieval efficiency and extended storage time,” arXiv: 0911.3869 (2009).
  6. M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009). [CrossRef] [PubMed]
  7. S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87(17), 173601 (2001). [CrossRef] [PubMed]
  8. B. S. Ham, “Ultralong quantum optical data storage using an optical locking technique,” Nat. Photonics 3(9), 518–522 (2009). [CrossRef]
  9. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005). [CrossRef] [PubMed]
  10. B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010). [CrossRef] [PubMed]
  11. S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003). [CrossRef]
  12. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7(2), 77–79 (1982). [CrossRef] [PubMed]
  13. B. S. Ham, “Analysis of controlled photon storage time using phase locking by atomic population transfer,” arXiv:1004.0980.
  14. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics 79–95 (Addison-Wesley, 1974). [PubMed]
  15. For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007). [CrossRef]
  16. G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008). [CrossRef] [PubMed]
  17. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008). [CrossRef] [PubMed]
  18. B. S. Ham, and J. Hahn, “Ultralong photon echo storage using optical locking,” arXiv:0912.2756.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited