OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17764–17775

All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect

Michael Pöllinger and Arno Rauschenbeutel  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17764-17775 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimental results on nonlinear, ultra-low power photonics applications based on a silica whispering-gallery-mode microresonator. Our bottle microresonator combines an ultrahigh quality factor of Q > 108 with a small mode volume V. The resulting Q2/V-ratio is among the highest realized for optical microresonators and allows us to observe bistable behavior at very low powers. We report single-wavelength all-optical switching via the Kerr effect at a record-low threshold of 50 µW. Moreover, an advantageous mode geometry enables the coupling of two tapered fiber waveguides to a bottle mode in an add-drop configuration. This allows us to route a CW optical signal between both fiber outputs with high efficiency by varying its power level. Finally, we demonstrate that the same set-up can also be operated as an optical memory.

© 2010 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.3270) Nonlinear optics : Kerr effect
(210.4680) Optical data storage : Optical memories
(230.1150) Optical devices : All-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: May 20, 2010
Revised Manuscript: July 26, 2010
Manuscript Accepted: July 28, 2010
Published: August 3, 2010

Michael Pöllinger and Arno Rauschenbeutel, "All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect," Opt. Express 18, 17764-17775 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  2. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004). [CrossRef]
  3. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006). [CrossRef]
  4. V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996). [CrossRef] [PubMed]
  5. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000). [CrossRef]
  6. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000). [CrossRef]
  7. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998). [CrossRef]
  8. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006). [CrossRef] [PubMed]
  9. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007). [CrossRef]
  10. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef] [PubMed]
  11. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004). [CrossRef] [PubMed]
  12. Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801(R) (2005). [CrossRef]
  13. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17, 11916–11925 (2009). [CrossRef]
  14. M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,” Phys. Rev. Lett. 103, 053901 (2009). [CrossRef] [PubMed]
  15. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997). [CrossRef] [PubMed]
  16. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef] [PubMed]
  17. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  18. T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulserouting with a GaAs/AlGaAs microring resonator,” Opt. Lett. 27, 803–805 (2002). [CrossRef]
  19. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999). [CrossRef]
  20. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery-modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006). [CrossRef]
  21. K. Vahala, Optical microcavities (World Scientific, 2004). [CrossRef]
  22. J. Heebner, R. Grover, and T. A. Ibrahim, Optical microresonators (Springer, 2008).
  23. H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92, 253905 (2004). [CrossRef] [PubMed]
  24. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21, 1812–1814 (1996). [CrossRef] [PubMed]
  25. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Sp¨alter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000). [CrossRef]
  26. K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002). [CrossRef]
  27. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003). [CrossRef]
  28. T. Carmon, T. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, and K. Vahala, “Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators,” Opt. Express 13, 3558-3566 (2005). [CrossRef] [PubMed]
  29. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989). [CrossRef]
  30. V. S. Il’chenko, M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  31. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998). [CrossRef]
  32. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005). [CrossRef] [PubMed]
  33. H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002). [CrossRef]
  34. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, and E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  35. E. Weidner, S. Combrie, A. de Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90, 101118 (2007). [CrossRef]
  36. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17, 21108–21117 (2009). [CrossRef] [PubMed]
  37. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004). [CrossRef] [PubMed]
  38. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [PubMed]
  39. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002). [CrossRef]
  40. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003). [CrossRef]
  41. N. Peychambarian and H. M. Gibbs, “Optical nonlinearity, bistability, and signal processing in semiconductors,” J. Opt. Soc. Am. B 2, 1215–1227 (1985). [CrossRef]
  42. J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993). [CrossRef]
  43. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769–771 (2004). [CrossRef] [PubMed]
  44. P. R. Berman, Cavity quantum electrodynamics (Academic Press, 1994).
  45. P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008). [CrossRef]
  46. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Physics 3, 807–812 (2007). [CrossRef]
  47. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited