OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17841–17858

Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery

Qiang Yang, David W. Arathorn, Pavan Tiruveedhula, Curtis R. Vogel, and Austin Roorda  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17841-17858 (2010)

View Full Text Article

Acrobat PDF (2294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an integrated FPGA solution to project highly stabilized, aberration-corrected stimuli directly onto the retina by means of real-time retinal image motion signals in combination with high speed modulation of a scanning laser. By reducing the latency between target location prediction and stimulus delivery, the stimulus location accuracy, in a subject with good fixation, is improved to 0.15 arcminutes from 0.26 arcminutes in our earlier solution. We also demonstrate the new FPGA solution is capable of delivering stabilized large stimulus pattern (up to 256x256 pixels) to the retina.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 17, 2010
Revised Manuscript: July 27, 2010
Manuscript Accepted: July 28, 2010
Published: August 4, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Qiang Yang, David W. Arathorn, Pavan Tiruveedhula, Curtis R. Vogel, and Austin Roorda, "Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery," Opt. Express 18, 17841-17858 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  2. R. K. Tyson, Principle of Adaptive Optics, 2 edition (San Diego: Academic Press, 1998).
  3. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  4. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006). [CrossRef] [PubMed]
  5. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  6. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  7. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  8. M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, “Compact adaptive optics line scanning ophthalmoscope,” Opt. Express 17(12), 10242–10258 (2009). [CrossRef] [PubMed]
  9. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  10. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  11. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007). [CrossRef] [PubMed]
  12. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]
  13. T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci. 49(10), 4679–4687 (2008). [CrossRef] [PubMed]
  14. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004). [CrossRef] [PubMed]
  15. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006). [CrossRef] [PubMed]
  16. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007). [CrossRef] [PubMed]
  17. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002). [CrossRef] [PubMed]
  18. W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Vis. Sci. 47(9), 4160–4167 (2006). [CrossRef] [PubMed]
  19. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004). [CrossRef] [PubMed]
  20. H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vis. 5(5), 444–454 (2005). [CrossRef] [PubMed]
  21. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator,” J. Refract. Surg. 26(1), 52–56 (2010). [CrossRef] [PubMed]
  22. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980). [CrossRef] [PubMed]
  23. M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, “Scanning laser ophthalmoscopy. Clinical applications,” Ophthalmology 89(7), 852–857 (1982). [PubMed]
  24. G. T. Timberlake, M. A. Mainster, R. H. Webb, G. W. Hughes, and C. L. Trempe, “Retinal localization of scotomata by scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 22(1), 91–97 (1982). [PubMed]
  25. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005). [PubMed]
  26. E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 1–14 (2007). [CrossRef] [PubMed]
  27. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004). [CrossRef] [PubMed]
  28. S. B. Stevenson, A., Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope.” in Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (Association for Computed Machinery, New York, NY, 2010) pp. 195–198.
  29. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation and image dewarping in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006). [CrossRef] [PubMed]
  30. S. B. Stevenson, and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy” in Ophthalmic Technologies XI, F. Manns, P. Soderberg, and A. Ho, eds. (SPIE, Bellingham, WA 2005).
  31. M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36(13), 1987–1994 (1996). [CrossRef] [PubMed]
  32. D. Ott and W. J. Daunicht, “Eye movement measurement with the scanning laser ophthalmoscope,” Clin. Vis. Sci. 7, 551–556 (1992).
  33. J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in Proceedings of the NASA Image Registration Workshop (IRW97) (NASA Goddard Space Flight Center, MD, 1997).
  34. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009). [CrossRef] [PubMed]
  35. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007). [CrossRef] [PubMed]
  36. D. W. Arathorn, Map-Seeking Circuits in Visual Cognition (Stanford University Press, Stanford 2002).
  37. R. W. Ditchburn and B. L. Ginsborg, “Vision with a stabilized retinal image,” Nature 170(4314), 36–37 (1952). [CrossRef] [PubMed]
  38. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The disappearance of steadily fixated visual test objects,” J. Opt. Soc. Am. 43(6), 495–501 (1953). [CrossRef] [PubMed]
  39. L. A. Riggs, J. C. Armington, and F. Ratliff, “Motions of the retinal image during fixation,” J. Opt. Soc. Am. 44(4), 315–321 (1954). [CrossRef] [PubMed]
  40. L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res. 8(2), 159–169 (1968). [CrossRef] [PubMed]
  41. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63(8), 921–928 (1973). [CrossRef] [PubMed]
  42. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt. 24(4), 527–537 (1985). [CrossRef] [PubMed]
  43. F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods 39(3), 350–364 (2007). [PubMed]
  44. M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature 447(7146), 852–854 (2007). [CrossRef] [PubMed]
  45. E. Midena, “Liquid Crystal Display Microperimetry” in Perimetry and the Fundus: In Introduction to Microperimetry, E. Midena, ed. (Slack Inc., Thorofare, NJ 2007) pp. 15–26.
  46. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (996 KB)     
» Media 2: MPG (1336 KB)     
» Media 3: MPG (916 KB)     
» Media 4: MPG (916 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited