OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17859–17864

Electrically tunable photonic true-time-delay line

Yuri O. Barmenkov, José Luis Cruz, Antonio Díez, and Miguel V. Andrés  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17859-17864 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new application of the acousto-optic superlattice modulation of a fiber Bragg grating based on the dynamic phase and group delay properties of this fiber-optic component. We demonstrate a tunable photonic true-time-delay line based on the group delay change of the light reflected from the grating sidebands. The delay is electrically tuned by adjusting the voltage applied to a piezoelectric transducer that generates the acoustic wave propagating along the grating. In our experiments, a true-time delay of 400 ps is continuously adjusted (300 ps within the 3 dB amplitude range of the first sideband), using a 12 cm long uniform grating.

© 2010 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4080) Fiber optics and optical communications : Modulation
(230.1040) Optical devices : Acousto-optical devices
(350.4010) Other areas of optics : Microwaves
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 18, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 8, 2010
Published: August 4, 2010

Yuri O. Barmenkov, José Luis Cruz, Antonio Díez, and Miguel V. Andrés, "Electrically tunable photonic true-time-delay line," Opt. Express 18, 17859-17864 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  3. C. Caucheteur, A. Mussot, S. Bette, A. Kudlinski, M. Douay, E. Louvergneaux, P. Mégret, M. Taki, and M. Gonz Lez-Herrāez, “All-fiber tunable optical delay line,” Opt. Express 18(3), 3093–3100 (2010). [CrossRef] [PubMed]
  4. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phase array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002). [CrossRef]
  5. V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005). [CrossRef]
  6. P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004). [CrossRef]
  7. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005). [CrossRef]
  8. X. Li, L. Peng, S. Wang, Y.-C. Kim, and J. Chen, “A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA,” Opt. Express 15(25), 16760–16766 (2007). [CrossRef] [PubMed]
  9. A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007). [CrossRef]
  10. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, and D. Pastor, “Analysis of a microwave time delay line based on a perturbbed uniform fiber Bragg grating operating at constant wavelength,” J. Lightwave Technol. 18(3), 430–436 (2000). [CrossRef]
  11. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009). [CrossRef] [PubMed]
  12. Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35(5), 769–771 (2010). [CrossRef] [PubMed]
  13. Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003). [CrossRef] [PubMed]
  14. S. Blais and J. Yao, “Photonic true-time delay beamforming based on superstructured fiber Bragg grating with linearly increasing equivalent chirps,” J. Lightwave Technol. 27(9), 1147–1154 (2009). [CrossRef]
  15. M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millan, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14(3), 1106–1112 (2006). [CrossRef] [PubMed]
  16. W. F. Liu, P. St. J. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Opt. Lett. 22(19), 1515–1517 (1997). [CrossRef]
  17. P. St. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” J. Opt. Soc. Am. A 17(8), 1421–1429 (2000). [CrossRef]
  18. C. Cuadrado-Laborde, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, “Mode locking of an all-fiber laser by acousto-optic superlattice modulation,” Opt. Lett. 34(7), 1111–1113 (2009). [CrossRef] [PubMed]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  20. R. Kashyap, “Fiber Bragg Gratings,” San Diego: Academic Press, 1999, chapter 4.
  21. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited