OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17865–17875

Fifteen terawatt picosecond CO2 laser system

D. Haberberger, S. Tochitsky, and C. Joshi  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17865-17875 (2010)
http://dx.doi.org/10.1364/OE.18.017865


View Full Text Article

Enhanced HTML    Acrobat PDF (1002 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation of a record peak-power of 15TW (45J, 3ps) in a single CO2 laser beam is reported. Using a master oscillator–power amplifier laser system, it is shown that up to 100J of energy can be extracted in a train of 3ps laser pulses separated by 18ps, a characteristic time of the CO2 molecule. The bandwidth required for amplifying the short injected laser pulse train in a 2.5atm final CO2 amplifier is provided by field broadening of the medium at intensities of up to 140GW/cm2. The measured saturation energy for 3ps pulses is 120mJ/cm2 which confirms that energy is simultaneously extracted from six rovibrational lines.

© 2010 OSA

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 28, 2010
Revised Manuscript: June 12, 2010
Manuscript Accepted: June 15, 2010
Published: August 4, 2010

Citation
D. Haberberger, S. Tochitsky, and C. Joshi, "Fifteen terawatt picosecond CO2 laser system," Opt. Express 18, 17865-17875 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008). [CrossRef] [PubMed]
  2. I. Pogorelsky, P. Shkolnikov, M. Chen, A. Pukhov, V. Yakimenko, P. McKenna, D. Carroll, D. Neely, Z. Najmudin, L. Willingdale, D. Stolyarov, E. Stolyarova, and G. Flynn, “Proton and ion beams generated with picosecond CO2 laser pulses,” in Proceedings of Advanced Accelerator Concepts: 13th Workshop, W. Leemans, ed. (2009), pp. 532–537.
  3. S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, and C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO(2) amplifier,” Opt. Lett. 26(11), 813–815 (2001). [CrossRef]
  4. S. Ya. Tochitsky, R. Narang, C. Filip, C. E. Clayton, K. A. Marsh, and C. Joshi, “Generation of 160-ps terawatt-power CO(2) laser pulses,” Opt. Lett. 24(23), 1717–1719 (1999). [CrossRef]
  5. P. B. Corkum, “Amplification of picosecond 10μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21(3), 216–232 (1985). [CrossRef]
  6. R. K. Brimacombe and J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited CO2 discharge,” IEEE J. Quantum Electron. 19(11), 1668–1673 (1983). [CrossRef]
  7. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955). [CrossRef]
  8. R. K. Brimacombe and J. Reid, “Influence of the dynamic Stark effect on the small-signal gain of optically pumped 4.3- μm CO2 lasers,” J. Appl. Phys. 58(3), 1141–1145 (1985). [CrossRef]
  9. R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 lasers,” IEEE J. Quantum Electron. 19(11), 1674–1679 (1983). [CrossRef]
  10. V. T. Platonenko and V. D. Taranukhin, “Coherent amplification of light pulses in media with a discrete spectrum,” Sov. J. Quantum Electron. 13(11), 1459–1466 (1983). [CrossRef]
  11. A. E. Siegman, Lasers (University of Science Books, Mill Valley, 1986).
  12. A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979). [CrossRef]
  13. C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, and C. Joshi, “Optical Kerr switching technique for the production of a picosecond, multiwavelength CO2 laser pulse,” J. Appl. Opt. 41(18), 3743–3747 (2002). [CrossRef]
  14. J.-M. Liu, Photonic Devices (Cambridge Univ. Press, 2005).
  15. R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(Spec.), 108–118 (2006). [CrossRef]
  16. R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981). [CrossRef]
  17. B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993). [CrossRef]
  18. S. Ya. Tochitsky, et al., “Present status and future prospects of high-power CO2 laser research,” in Proceedings of the International Conference LASERS 2000, V. J. Corcoran and T. A. Corcoran, eds. (2001), pp. 417–427.
  19. L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963). [CrossRef]
  20. D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988). [CrossRef] [PubMed]
  21. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985). [CrossRef] [PubMed]
  22. D. Haberberger, et al., “Proton acceleration in CO2 laser plasma interactions at critical density,” in Proceedings of Partical Accelerator Conference, Vancouver (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited