OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17913–17921

Power efficient subcarrier modulation for intensity modulated channels

Johnny Karout, Erik Agrell, and Magnus Karlsson  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17913-17921 (2010)
http://dx.doi.org/10.1364/OE.18.017913


View Full Text Article

Enhanced HTML    Acrobat PDF (1197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare formats for optical intensity modulation limited by thermal noise with the assumption of having ideal devices. At the same bitrate and bandwidth, a hitherto unknown format turns out to be more power efficient than known formats. This new modulation, which is a hybrid between on-off keying and phase-shift keying, belongs to the subcarrier modulation family. At asymptotically high signal-to-noise ratios, this hybrid scheme has a 1.2 dB average electrical power gain and 0.6 dB average optical power gain compared to OOK, while it has a 3.0 dB average electrical power gain and 2.1 dB average optical power gain compared to subcarrier QPSK.

© 2010 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 27, 2010
Revised Manuscript: July 22, 2010
Manuscript Accepted: July 27, 2010
Published: August 5, 2010

Citation
Johnny Karout, Erik Agrell, and Magnus Karlsson, "Power efficient subcarrier modulation for intensity modulated channels," Opt. Express 18, 17913-17921 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17913


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Winzer and R.-J. Essiambre, "Advanced modulation formats for high-capacity optical transport networks," J. Lightwave Technol. 24, 4711-4728 (2006). [CrossRef]
  2. S. Randel, F. Breyer, and S. C. J. Lee, "High-speed transmission over multimode optical fibers," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2008), paper OWR2.
  3. P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electron. Lett. 45, 366-368 (2009). [CrossRef]
  4. B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, and J. W. Walewski, "Impact of LED nonlinearity on discrete multitone modulation," J. Opt. Commun. Netw. 1, 439-451 (2009). [CrossRef]
  5. J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, and A. V. Krishnamoorthy, "PAM-4 signaling over VCSELs with 0.13 μm CMOS chip technology," Opt. Express 14, 12028-12038 (2006). [CrossRef] [PubMed]
  6. S. Hranilovic and F. R. Kschischang, "Capacity bounds for power-and band-limited optical intensity channels corrupted by Gaussian noise," IEEE Trans. Information Theory 50, 784-795 (2004). [CrossRef]
  7. S. Walklin and J. Conradi, "Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems," J. Lightwave Technol. 17, 2235-2248 (1999). [CrossRef]
  8. S. Hranilovic, "On the design of bandwidth efficient signalling for indoor wireless optical channels," Int. J. Commun. Systems 18, 205-228 (2005). [CrossRef]
  9. J. M. Kahn and J. R. Barry, "Wireless infrared communications," IEEE Proc. 85, 265-298 (1997). (Invited Paper). [CrossRef]
  10. J. R. Barry, Wireless Infrared Communications (Kluwer Academic Publishers, Norwell, MA, USA, 1994). [CrossRef]
  11. A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, "Single cycle subcarrier modulation," in Optical Fiber Communication Conference, OSA Technical Digest, (2009), paper OTuE1.
  12. B.-E. Olsson and A. Alping, "Electro-optical subcarrier modulation transmitter for 100 GbE DWDM transport," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest, (2008), paper SaF3.
  13. B.-E. Olsson and M. Skold, "QPSK transmitter based on optical amplitude modulation of electrically generated QPSK signal," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest, (2008), paper SaA3.
  14. S. Hranilovic and D. A. Johns, "A multilevel modulation scheme for high-speed wireless infrared communications," in IEEE International Symposium on Circuits and Systems, (1999), pp. 338-341.
  15. R. You and J. M. Kahn, "Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals," IEEE Trans. Commun. 49, 2164-2171 (2001). [CrossRef]
  16. S. C. J. Lee, F. Breyer, S. Randel, and A. M. J. Koonen, "High-speed transmission over multimode using discrete multitone modulation," J. Opt. Netw. 7, 183-196 (2008). (Invited Paper). [CrossRef]
  17. B.-E. Olsson, J. M°artensson, A. Kristiansson, and A. Alping, "RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter," in Optical Fiber Communication Conference, OSA Technical Digest, (2010), paper OMK5.
  18. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, "47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation," J. Lightwave Technol. 28, 352-359 (2010). [CrossRef]
  19. W. Kang and S. Hranilovic, "Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels," in IEEE International Conference on Communications, (2006), pp. 2743-2748.
  20. X. Liang, W. Li, W. Ma, and K. Wang, "A simple peak-to-average power ratio reduction scheme for all optical orthogonal frequency division multiplexing systems with intensity modulation and direct detection," Opt. Express 17, 15614-15622 (2009). [CrossRef] [PubMed]
  21. H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," in Proceedings of the Sixth international conference on Wireless and Optical Communications Networks, (2009), pp. 388-392.
  22. S. Hranilovic and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Information Theory 49, 1385-1399 (2003). [CrossRef]
  23. W. Mao and J. M. Kahn, "Lattice codes for amplified direct-detection optical systems," IEEE Trans. Commun. 56, 1137-1145 (2008). [CrossRef]
  24. G. P. Agrawal, Lightwave Technology (John Wiley & Sons, Inc., New Jersey, 2005). [CrossRef]
  25. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightwave Technol. 28, 662-701 (2010). (Invited Paper). [CrossRef]
  26. M. C. Gursoy, "Error rate analysis for peaky signaling over fading channels," IEEE Trans. Commun. 57, 2546-2550 (2009). [CrossRef]
  27. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, New York, 2008), 5th ed.
  28. K. L. Kaiser, Electromagnetic Compatibility Handbook (CRC Press, 2004).
  29. M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques (Prentice Hall PTR, USA, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited