OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17922–17927

Tunable band-pass plasmonic waveguide filters with nanodisk resonators

Hua Lu, Xueming Liu, Dong Mao, Leiran Wang, and Yongkang Gong  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17922-17927 (2010)
http://dx.doi.org/10.1364/OE.18.017922


View Full Text Article

Enhanced HTML    Acrobat PDF (822 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel and simple plasmonic filter based on metal-insulator-metal plasmonic waveguides with a nanodisk resonator is proposed and investigated numerically. By the resonant theory of disk-shaped nanocavity, we find that the resonance wavelengths can be easily manipulated by adjusting the radius and refractive index of the nanocavity, which is in good agreement with the results obtained by finite-difference time-domain (FDTD) simulations. In addition, the bandwidths of resonance spectra are tunable by changing the coupling distance between the nanocavity and waveguides. This result achieved by FDTD simulations can be accurately analyzed by temporal coupled mode theory. Our filters have important potential applications in high-density plasmonic integration circuits.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 8, 2010
Revised Manuscript: July 17, 2010
Manuscript Accepted: July 26, 2010
Published: August 5, 2010

Citation
Hua Lu, Xueming Liu, Dong Mao, Leiran Wang, and Yongkang Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express 18, 17922-17927 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7554 (2009). [CrossRef]
  3. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  4. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005). [CrossRef] [PubMed]
  5. C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008). [CrossRef] [PubMed]
  6. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006). [CrossRef] [PubMed]
  7. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004). [CrossRef] [PubMed]
  8. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  9. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004). [CrossRef]
  10. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010). [CrossRef] [PubMed]
  11. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004). [CrossRef] [PubMed]
  12. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008). [CrossRef] [PubMed]
  13. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009). [CrossRef] [PubMed]
  14. J. W. Mu and W. P. Huang, “A Low-Loss Surface Plasmonic Bragg Grating,” J. Lightwave Technol. 27(4), 436–439 (2009). [CrossRef]
  15. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  16. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009). [CrossRef] [PubMed]
  17. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006). [CrossRef] [PubMed]
  18. A. Hosseini and Y. Massoud, “Nanoscale surface Plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007). [CrossRef]
  19. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009). [CrossRef]
  20. A. Noual, A. Akjouj, Y. Pennec, J. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009). [CrossRef]
  21. A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” 2nd ed. (Artech House, Boston, 2000).
  22. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007). [CrossRef]
  23. S. L. Qiu and Y. P. Li, “Q-factor instability and its explanation in the staircased FDTD simulation of high-Q circular cavity,” J. Opt. Soc. Am. B 26(9), 1664–1674 (2009). [CrossRef]
  24. I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26(12), 2623–2633 (2009). [CrossRef]
  25. Q. Li, T. Wang, Y. K. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010). [CrossRef] [PubMed]
  26. Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1981 KB)      QuickTime
» Media 2: MOV (1005 KB)      QuickTime
» Media 3: MOV (1859 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited