OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17950–17957

An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis

Xia Yu, Shuyan Zhang, Ying Zhang, Ho-Pui Ho, Ping Shum, Hairong Liu, and Deming Liu  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17950-17957 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have analytically investigated the polarization dependence of surface plasmon resonance in fiber structures having strong asymmetry. From our simulation experiments it is found that the resonance wavelength coincides with the zero-birefringence point of two degenerate modes, consequently demonstrating a new approach through which one can accurately locate the resonance peak of the system without having to analyze the loss spectrum. Results obtained using the new technique also reveal better performance in terms of accuracy and computation efficiency. Application of this approach in the analysis of refractive index and pressure sensors based on the single core D-shaped and symmetric multiple air-hole fibers respectively is presented as a demonstration. The proposed technique, which primarily involves the search of zero-birefringence point, may be generalized for the study of other plasmonic waveguide structures.

© 2010 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(240.6680) Optics at surfaces : Surface plasmons
(260.1440) Physical optics : Birefringence

ToC Category:
Optics at Surfaces

Original Manuscript: June 17, 2010
Revised Manuscript: August 2, 2010
Manuscript Accepted: August 2, 2010
Published: August 5, 2010

Xia Yu, Shuyan Zhang, Ying Zhang, Ho-Pui Ho, Ping Shum, Hairong Liu, and Deming Liu, "An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis," Opt. Express 18, 17950-17957 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968). [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).
  4. S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010). [CrossRef]
  5. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007). [CrossRef]
  6. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008). [CrossRef] [PubMed]
  7. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004). [CrossRef]
  8. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008). [CrossRef]
  9. D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008). [CrossRef]
  10. H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46(5), 800–806 (2007). [CrossRef] [PubMed]
  11. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008). [CrossRef] [PubMed]
  12. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010). [CrossRef]
  13. E. Pone, A. Hassani, S. Lacroix, and M. Skorobogatiy, "A Pressure Sensor Based on the Loss Birefringence of a Microstructured Optical Fiber Containing Metal Coated Elliptical Inclusions," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMZ3.
  14. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008). [CrossRef]
  15. J. Homola, “On the sensitivity of surface-plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997). [CrossRef]
  16. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009). [CrossRef]
  17. R. Paschotta, (2008, Oct). Encyclopedia of Laser Physics and Technology. [Online]. Available: http://www.rp-photonics.com/encyclopedia.html
  18. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optic-fiber based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007). [CrossRef]
  19. A. Vasicek, “The reflection of light from a metal coated with thin films,” J. Phys. 1, 73–77 (1952).
  20. P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007). [CrossRef]
  21. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  22. M. Piliarik, J. Homola, and Z. Maníková, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003). [CrossRef]
  23. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007). [CrossRef] [PubMed]
  24. D. H. Spadoti, B. V. Borges, and M. A. Romero, “Birefringence enhancement by using D-shaped microstructure optical fibers,” J. Opt. A, Pure Appl. Opt. 11(8), 085105 (2009). [CrossRef]
  25. M. N. O. Sadiku, Elements of Electromagnetics (Oxford University Press, 2001), pp. 563–565.
  26. A. Kumar, S. Pilevar, and K. Thyagarajan, “Measurements on variation of birefringence with depth of polishing in elliptic core fibers,” Opt. Commun. 72(3-4), 187–189 (1989). [CrossRef]
  27. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited