OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18003–18014

Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

Mikkel Heuck, Søren Blaaberg, and Jesper Mørk  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18003-18014 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539–4553 (2005)]. An extensive numerical investigation of the influence of key parameters of the active sections and the photonic crystal cavity on the laser performance is presented. The results show the possibility of generating stable and high quality pulses in a large parameter region. For optimized dispersion properties of the photonic crystal waveguide cavity, the pulses have sub picosecond widths and are nearly transform limited.

© 2010 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.5298) Materials : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 21, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: July 19, 2010
Published: August 6, 2010

Mikkel Heuck, Søren Blaaberg, and Jesper Mørk, "Theory of passively mode-locked photonic crystal semiconductor lasers," Opt. Express 18, 18003-18014 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus, and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]
  2. J. Mulet, and J. Mørk, “Analysis of timing jitter in external-cavity mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 42, 249–256 (2006). [CrossRef]
  3. K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlowe, J. Mørk, D. Birkedal, J. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photon. Technol. Lett. 16, 975–977 (2004). [CrossRef]
  4. M. Soljacic, and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004). [CrossRef] [PubMed]
  5. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc., Optoelectron. 147, 251–278 (2000). [CrossRef]
  6. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009). [CrossRef]
  7. R. Hao, E. Cassan, H. Kurt, X. L. Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18(6), 5942–5950 (2010). [CrossRef] [PubMed]
  8. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  9. A. G. Vladimirov, and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005). [CrossRef]
  10. S. Bischoff, M. P. Sørensen, J. Mørk, S. D. Brorson, T. Franck, J. M. Nielsen, and A. M. Larsen, “Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes,” Appl. Phys. Lett. 67, 3877–3879 (1995). [CrossRef]
  11. A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical Study of Dynamical Regimes in a Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 45, 462–468 (2009). [CrossRef]
  12. R. G. M. P. Koumans, and R. van Roijen, “Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion, and pulse collisions,” IEEE J. Quantum Electron. 32, 478–492 (1996). [CrossRef]
  13. J. Mulet, M. Kroh, and J. Mørk, “Pulse properties of external-cavity mode-locked semiconductor lasers,” Opt. Express 14, 1119–1124 (2006). [CrossRef] [PubMed]
  14. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007). [CrossRef] [PubMed]
  15. J. S. Bendat, and A. G. Piersol, Random Data, Analysis and Measurement Procedures, (John Wiley & Sons, INC., 2000).
  16. M. J. R. Heck, E. A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Simulation and design of integrated femtosecond passively mode-locked semiconductor ring lasers including integrated passive pulse shaping components,” IEEE J. Sel. Top. Quantum Electron. 12, 265–276 (2006). [CrossRef]
  17. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (John Wiley & Sons, Inc., 1995).
  18. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef] [PubMed]
  19. S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009). [CrossRef]
  20. G. P. Agraval, Nonlinear Fiber Optics, (Academic Press, 2007).
  21. J. A. Leegwater, “Theory of mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 32, 1782–1790 (1996). [CrossRef]
  22. N. Cheng, and J. C. Cartledge, “Measurement-based model for MQW electroabsorption modulators,” J. Lightwave Technol. 23, 4265–4269 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited