OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18015–18034

Signal, noise, and bias for a broadband, division-of-amplitude Stokes polarimeter

David W. Tyler and Jason D. Mudge  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18015-18034 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze estimation error as a function of spectral bandwidth for division-of-amplitude (DoAm) Stokes polarimeters. Our approach allows quantitative assessment of the competing effects of noise and deterministic error, or bias, as bandwidth is varied. We use the signal-to-rms error (SRR) as a metric. Rather than calculating the SRR of the estimated Stokes parameters themselves, we use the singular-value decomposition to calculate the SRRs of the coefficients of the measured data vector projected onto the measurement matrix left singular vectors. We argue that calculating the SRRs for left singular vector coefficients will allow development of reconstruction filters to minimize Stokes estimation error. For the example case of a source with constant polarization over a relatively wide band, we show that as the spectral filter bandwidth is increased to include wavelengths significantly different than the design wavelength, the SRRs of the estimated left singular vector coefficients will a.) increase monotonically if relatively few photo-detection events (PDEs) are recorded, b.) after a sharp peak close to the design wavelength, decrease monotonically if relatively many PDEs are recorded, and c.) have well-defined maxima for nominal PDE counts. Given some idea of the source brightness relative to detector noise, one can specify a spectral filter bandwidth minimizing the variance and bias effects and optimizing Stokes parameter estimation. Our approach also allows one to specify the bandwidth over which the response of “achromatic” optics must be reasonably invariant with wavelength for rms Stokes estimation error to remain below some desired maximum. Finally, we point out that our method can be generalized not only to other types of polarimeters, but also to any sensing scheme that can be represented by a linear system for limiting values of a certain parameter.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 21, 2010
Revised Manuscript: July 25, 2010
Manuscript Accepted: July 27, 2010
Published: August 6, 2010

David W. Tyler and Jason D. Mudge, "Signal, noise, and bias for a broadband, division-of-amplitude Stokes polarimeter," Opt. Express 18, 18015-18034 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. A. Azzam, “Division-of-amplitude photo-polarimeter for the simultaneous measurement of all four Stokes parameters of light,” J. Mod. Opt. 29, 685–689 (1982).
  2. R. A. Chipman, “Data reduction for light-measuring polarimeters,” in Handbook of Optics, 3 ed., Vol. 1, Ch. 15, Sec. 20, McGraw-Hill (1995)
  3. A. Ambirajan, and D. C. Look, “Optimum angles for a polarimeter: Part I,” Opt. Eng. 34, 1651–1655 (1995). [CrossRef]
  4. A. Ambirajan, and D. C. Look, “Optimum angles for a polarimeter: Part II,” Opt. Eng. 34, 1656–1658 (1995). [CrossRef]
  5. D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemma, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” in Polarization Analysis, Measurement, and Remote Sensing III, D. B. Chenault, M. J. Duggin, W. G. Egan and D. H. Goldstein, eds., Proc. SPIE 4133 75–81 (2000). [CrossRef]
  6. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  7. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  8. J. S. Tyo, “Design of optimal polarimeters: Maximization of signal-to-noise and minimization of deterministic error,” Appl. Opt. 41, 619–630 (2002). [CrossRef] [PubMed]
  9. V. L. Gamiz, and J. F. Belsher, “Performance limitations of a four-channel polarimeter in the presence of detection noise,” Opt. Eng. 41, 973–980 (2002). [CrossRef]
  10. M. R. Foreman, C. M. Romero, and P. Török, “A priori information and optimization in polarimetry,” Opt. Express 16, 15212–15226 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-19-15212. [CrossRef] [PubMed]
  11. E. Wolf, “Unified theory of polarization and coherence,” in Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press 2007)pp. 174–201.
  12. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  13. J. Boger, D. Bowers, M. P. Fetrow, and K. Bishop, “Issues in a broadband 4-channel reduced Stokes polarimeter,” in Polarization Analysis, Measurement, and Remote Sensing IV, D. H. Goldstein, D. B. Chenault, W. G. Egan, M. J. Duggin, eds., Proc. SPIE 4481, pp. 311–321 (2002). [CrossRef]
  14. G. H. Golub, and C. F. Van Loan, “Orthogonality and the SVD,” in Matrix Computations, 3rd ed., Johns Hopkins University Press, p. 70 (1996).
  15. D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, “An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images,” IEEE Trans. Nucl. Sci. 43, 2275–2284 (1996). [CrossRef]
  16. A. M. Phenis, M. Virgen, and E. de Leon, “Achromatic instantaneous Stokes imaging polarimeter,” in Novel Optical Systems Design and Optimization VIII,” J. Sasian, R. Koshen, & R. Juergen, eds., Proc. SPIE 5875, pp. 587502–1–587502–8 (2005).
  17. E. de Leon, R. Brandt, A. Phenis, and M. Virgen, “Initial results of a simultaneous Stokes imaging polarimeter,” in Polarization Science and Remote Sensing III, J. Shaw, J. S. Tyo, eds., Proc. SPIE 6682, 668215–668215–9 (2007). [CrossRef]
  18. M. C. Roggemann, D. W. Tyler, and M. F. Bilmont, “Linear reconstruction of compensated images: Theory and experimental results,” Appl. Opt. 31, 7429–7441 (1992). [CrossRef] [PubMed]
  19. P. C. Hansen, “The smoothing property of the kernel,” in Rank-Deficient and Discrete Ill-Posed Problems,” SIAM Press, Philadelphia, p. 8 (1998).
  20. J. D. Mudge, M. A. Virgen, and P. Dean, “Near-infrared simultaneous Stokes imaging polarimeter,” in Polarization Science and Remote Sensing IV, J.A. Shaw & J.S. Tyo, eds., Proc. SPIE 7461,74610L (2009). [CrossRef]
  21. F. Goudail, and A. Bénière, “Optimization of the contrast in polarimetric scalar images,” Opt. Lett. 34(9), 1471–1473 (2009). [CrossRef] [PubMed]
  22. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial Mueller polarimeters,” Appl. Opt. 49, 2326–2333 (2010). [CrossRef] [PubMed]
  23. J. G. Nagy, R. J. Plemmons, and T. C. Torgersen, “Iterative image restoration using approximate inverse preconditioning,” IEEE Trans. Image Process. 5, 1151–1162 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited