OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18041–18046

Estimation of displacement derivatives in digital holographic interferometry using a two-dimensional space-frequency distribution

G. Rajshekhar, Sai Siva Gorthi, and Pramod Rastogi  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18041-18046 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The paper introduces a two-dimensional space-frequency distribution based method to directly obtain the unwrapped estimate of the phase derivative which corresponds to strain in digital holographic interferometry. In the proposed method, a two-dimensional pseudo Wigner-Ville distribution of the reconstructed interference field is evaluated and the peak of the distribution provides information about the phase derivative. The presence of a two-dimensional window provides high robustness against noise and enables simultaneous measurement of phase derivatives along both spatial directions. Simulation and experimental results are presented to demonstrate the method’s applicability for phase derivative estimation.

© 2010 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: June 4, 2010
Revised Manuscript: August 2, 2010
Manuscript Accepted: August 3, 2010
Published: August 6, 2010

G. Rajshekhar, Sai Siva Gorthi, and Pramod Rastogi, "Estimation of displacement derivatives in digital holographic interferometry using a two-dimensional space-frequency distribution," Opt. Express 18, 18041-18046 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Cordero, J. Molimard, F. Labbe, and A. Martinez, “Strain maps obtained by phase-shifting interferometry: an uncertainty analysis,” Opt. Commun. 281, 2195–2206 (2008). [CrossRef]
  2. G. K. Bhat, “A Fourier transform technique to obtain phase derivatives in interferometry,” Opt. Commun. 110, 279–286 (1994). [CrossRef]
  3. Y. Zou, G. Pedrini, and H. Tiziani, “Derivatives obtained directly from displacement data,” Opt. Commun. 111, 427–432 (1994). [CrossRef]
  4. U. Schnars, and W. P. O. Juptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994). [CrossRef] [PubMed]
  5. C. Liu, “Simultaneous measurement of displacement and its spatial derivatives with a digital holographic method,” Opt. Eng. 42, 3443–3446 (2003). [CrossRef]
  6. C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809–815 (2009). [CrossRef]
  7. K. Qian, S. H. Soon, and A. Asundi, “Phase-shifting windowed Fourier ridges for determination of phase derivatives,” Opt. Lett. 28, 1657–1659 (2003). [CrossRef] [PubMed]
  8. C. Badulescu, M. Gr’ediac, J. D. Mathias, and D. Roux, “A procedure for accurate one-dimensional strain measurement using the grid method,” Exp. Mech. 49, 841–854 (2009). [CrossRef]
  9. C. A. Sciammarella, and T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182–3193 (2003). [CrossRef]
  10. G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Strain, curvature, and twist measurements in digital holographic interferometry using pseudo Wigner-Ville distribution based method,” Rev. Sci. Instrum. 80, 093107 (2009). [CrossRef] [PubMed]
  11. S. S. Gorthi, and P. Rastogi, “Simultaneous measurement of displacement, strain and curvature in digital holographic interferometry using high-order instantaneous moments,” Opt. Express 17, 17784–17791 (2009). [CrossRef] [PubMed]
  12. S. S. Gorthi, G. Rajshekhar, and P. Rastogi, “Strain estimation in digital holographic interferometry using piecewise polynomial phase approximation based method,” Opt. Express 18, 560–565 (2010). [CrossRef] [PubMed]
  13. U. Schnars, and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  14. S. S. Gorthi, and P. Rastogi, “Analysis of reconstructed interference fields in digital holographic interferometry using the polynomial phase transform,” Meas. Sci. Technol. 20, 075307 (2009). [CrossRef]
  15. L. Debnath, and B. Rao, “On new two-dimensional Wigner-Ville nonlinear integral transforms and their basic properties,” Integr. Transf. Spec. F 21, 165–174 (2010). [CrossRef]
  16. L. Cohen, Time Frequency Analysis (Prentice Hall, 1995).
  17. A. Choudry, “Digital holographic interferometry of convective heat transport,” Appl. Opt. 20, 1240–1244 (1981). [CrossRef] [PubMed]
  18. N. Pandey, and B. Hennelly, “Fixed-point numerical reconstruction for digital holographic microscopy,” Opt. Lett. 35, 1076–1078 (2010). [CrossRef] [PubMed]
  19. L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald, and T. J. Naughton, “Using commodity graphics hardware for real-time digital hologram view reconstruction,” J. Disp. Technol. 5, 111–119 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited